Synthesis 2023; 55(13): 1949-1960
DOI: 10.1055/a-1702-5062
short review

Recognition of Symmetry as a Powerful Tool in Natural Product Synthesis

Lara Cala
,
Mario A. Gaviria
,
Scott L. Kim
,
Trenton R. Vogel
,
We thank the National Science Foundation (CHE-1654223) and the NIH/National Institute of General Medical Sciences (R01-GM118644) for financial support. C.S.S. thanks the David and Lucile Packard Foundation, the Alfred P. Sloan Foundation, and the Camille and Henry Dreyfus Foundation.


Abstract

The design of concise and efficient synthetic strategies to access naturally occurring, pharmaceutically active complex molecules is of utmost importance in current chemistry. It not only enables rapid access to these molecules and their analogues but also provides sufficient quantities for their biological evaluation. Identification of any symmetric or pseudosymmetric synthetic intermediates upon retrosynthetic bond disconnection of the target molecule holds the promise to significantly streamline the route towards the compound of interest. This review will highlight recent examples of successful natural product syntheses reported within the past five years that benefited from the recognition of symmetry elements during the retrosynthetic design.

1 Introduction

2 Examples

2.1 Chondrosterin I and J

2.2 (–)-Bilobalide A

2.3 Delavatine A

2.4 Oxycodone

2.5 (–)-20-epi-vincamine and (–)-20-epi-eburnamonine

2.6 Reserpine

2.7 (–)-Berkeleyone A

2.8 (–)-Maximiscin

2.9 Aplysiasecosterol A

2.10 (–)-Batrachotoxinin A

2.11 (–)-Mitrephorone A

3 Conclusions



Publication History

Received: 11 August 2021

Accepted after revision: 22 November 2021

Accepted Manuscript online:
22 November 2021

Article published online:
08 March 2023

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Butler MS. J. Nat. Prod. 2004; 67: 2141
    • 1b Harvey AL, Edraba-Ebel R, Quinn RJ. Nat. Rev. Drug Discovery 2015; 14: 111
    • 1c Newman DJ, Cragg GM. J. Nat. Prod. 2016; 79: 629
    • 1d Atanasov AG, Zotchev SB, Dirsch VM. Nat. Rev. Drug Discovery 2021; 20: 200
    • 2a Robinson R. J. Chem. Soc., Trans. 1917; 111: 762
    • 2b Movassaghi M, Medley JW. Chem. Commun. 2013; 49: 10775
  • 3 Nicolaou KC, Krieger J, Murhade GM, Subramanian P, Dherange BD, Vourloumis D, Munneke S, Lin B, Gu C, Sarvaiaya H, Sandoval J, Zhang Z, Aujay M, Purcell JW, Gavrilyuk J. J. Am. Chem. Soc. 2020; 142: 15476
  • 4 Nicolaou KC, Bellavance G, Buchman M, Pulukuri KK. J. Am. Chem. Soc. 2017; 139: 15636
  • 5 Cochrane JR, White JM, Wille U, Hutton CA. Org. Lett. 2012; 14: 2402
  • 6 Zhu X, McAtee CC, Schindler CS. Org. Lett. 2018; 20: 2862
    • 7a Malinowski JT, Sharpe RJ, Johnson JS. Science 2013; 340: 180
    • 7b Sharpe TJ, Malinowski JT, Johnson JS. J. Am. Chem. Soc. 2013; 135: 17990
  • 8 Hu X, Maimone TJ. J. Am. Chem. Soc. 2014; 136: 5287
    • 9a Ho T.-K. Symmetry: A Basis for Synthesis Design . John Wiley & Sons; New York: 1995
    • 9b Bai W.-J, Wang X. Nat. Prod. Rep. 2017; 34: 1345
    • 9c Merad J, Candy M, Pons J.-M, Bressy C. Synthesis 2017; 49: 1938
    • 9d Inai M, Asakawa T, Kan T. Tetrahedron Lett. 2018; 59: 1343
  • 10 Li H.-J, Jiang W.-H, Liang W.-L, Huang J.-X, Mo Y.-F, Ding Y.-Q, Lam C.-K, Qian X.-J, Zhu X.-F, Lan W.-J. Mar. Drugs 2014; 12: 167
  • 11 Li H, Lan W, Jiang W, Zhu X, Feng G, Qian X. (Faming Zhuanli Shenqing) CN 103724184 A, 2014
    • 12a Iyoda M, Kushida T, Kitami S, Oda M. J. Chem. Soc., Chem. Commun. 1986; 1049
    • 12b Chandler CL, List B. J. Am. Chem. Soc. 2008; 130: 6737
  • 13 Kawamoto Y, Ozone D, Kobayashi T, Ito H. Eur. J. Org. Chem. 2020; 4050
  • 14 Kawamoto Y, Ozone D, Kobayashi T, Ito H. Org. Biomol. Chem. 2018; 16: 8477
    • 15a Wada K, Sasaki K, Miura K, Yagi M, Kubota Y, Matsumoto T, Haga M. Chem. Pharm. Bull. 1993; 16: 210
    • 15b Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, Malenka RC, Garner CC. Nat. Neurosci. 2007; 10: 411
    • 16a DeKosky ST, Williamson JD, Fitzpatrick AL, Kronmal RA, Ives DG, Saxton JA, Lopez OL, Burke G, Carlson MC, Fried LP, Kuller LH, Robbins JA, Tracy RP, Woolard NF, Dunn L, Snitz BE, Nahin RL, Furberg CD. JAMA, J. Am. Med. Assoc. 2008; 300: 2253
    • 16b Wada K, Ishigaki S, Ueda K, Take Y, Sasaki K, Sakata M, Haa M. Chem. Pharm. Bull. 1988; 36: 1779
    • 16c van Beek TA, Taylor LT. Phytochem. Anal. 1996; 7: 185
    • 17a Crimmins MT, Jung DK, Gray JL. J. Am. Chem. Soc. 1993; 115: 3146
    • 17b Corey EJ, Su W.-G. Tetrahedron Lett. 1988; 29: 3423
  • 18 Baker MA, Demoret RM, Ohtawa M, Shenvi RA. Nature 2019; 575: 643
    • 19a Editorial Committee, Chin. Herb. Med. 1999, 21, 6435
    • 19b Chen YQ, Zhang WD, Kong LY, Lu T, Shen YH. Nat. Prod. Res. 2010; 24: 915
  • 20 Zhang Z, Yang F, Fu JJ, Shen YH, He W, Zhang WD. RSC Adv. 2016; 6: 65885
  • 21 Xie Q, Wu GZ, Yang N, Shen YH, Tang J, Zhang WD. Biochem. Biophys. Res. Commun. 2018; 502: 202
    • 22a Zhang Z, Wang J, Li J, Yang F, Liu G, Tang W, He W, Fu JJ, Shen YH, Li A, Zhang WD. J. Am. Chem. Soc. 2017; 139: 5558
    • 22b Peez T, Luy JN, Harms K, Tonner R, Koert U. Chem. Eur. J. 2018; 24: 17686
  • 23 Palani V, Hugelshofer CL, Kevlishvili I, Liu P, Sarpong R. J. Am. Chem. Soc. 2019; 141: 2652
  • 24 Palani V, Hugelshofer CL, Sarpong R. J. Am. Chem. Soc. 2019; 141: 14421
  • 25 Boora K. Oxycodone . Elsevier; New York: 2007: 1-5
    • 26a Lipp A, Selt M, Ferenc D, Schollmeyer D, Waldvogel SR, Opatz T. Org. Lett. 2019; 21: 1828
    • 26b Makarova M, Endoma-Arias MA. A, Dela Paz HE, Simionescu R, Hudlicky T. J. Am. Chem. Soc. 2019; 141: 10883
    • 26c Kimishima A, Umihara H, Mizoguchi A, Yokoshima S, Fukuyama T. Org. Lett. 2014; 16: 6244
    • 26d Park KH, Chen DY.-K. Chem. Commun. 2018; 54: 13018
  • 27 Rubush DM, Morges MA, Rose BJ, Thamm DH, Rovis T. J. Am. Chem. Soc. 2012; 134: 13554
  • 28 Döpke W. The Eburnamine-Vincanmine Alkaloids . In The Alkaloids: Chemistry and Physiology, Vol. 20. Rodrigo RG. A. Academic Press; New York: 1981: 297
  • 29 Czibula L, Nemes A, Visky G, Farkas M, Szombathelyi Z, Kárpáti E, Sohár P, Kessel M, Kreidl J. Liebigs Ann. Chem. 1993; 221

    • For pioneering efforts, see:
    • 30a Kuehne MR. J. Am. Chem. Soc. 1964; 86: 2946
    • 30b Wenkert E, Wickberg B. J. Am. Chem. Soc. 1965; 87: 1580
  • 31 Zhang W, Chen X, An Y, Wang J, Zhuang C, Tang P, Chen FE. Chem. Eur. J. 2020; 26: 10439
  • 32 Wee AG. H, Yu Q. Tetrahedron Lett. 2000; 41: 587
  • 33 Yasui Y, Takeda H, Takemoto Y. Chem. Pharm. Bull. 2008; 56: 1567
  • 34 Müller JM, Schlittler E, Bein HJ. Experientia 1952; 8: 338
    • 35a Woodson RE, Younken HW, Schlittler E, Schneider JA. Rauwolfia: Botany, Pharmacognosy, Chemistry and Pharmacology . Little, Brown and Co; Boston: 1957
    • 35b Monachino J. Econ. Bot. 1954; 8: 349
    • 35c Chatterjee A, Pakrashi S, Werner G. Fortschr. Chem. Org. Naturst. 1956; 13: 346
    • 35d Lucas RA. Prog. Med. Chem. 1963; 3: 146
    • 35e Physician’s Desk Reference, 26th ed. Medical Economics Inc; Oradell: 1972: 659
    • 36a Woodward RB, Bader FE, Bickel H, Frey AJ, Kierstead RW. J. Am. Chem. Soc. 1956; 78: 2023
    • 36b Woodward RB, Bader FE, Bickel H, Frey AJ, Kierstead RW. Tetrahedron 1958; 2: 1
    • 37a Chen FE, Huang J. Chem. Rev. 2005; 105: 4671
    • 37b Khan ZA, Shahzad SA, Anjum A, Bale AT, Naqvi SA. R. Synth. Commun. 2018; 48: 1128
  • 38 Park J, Chen DY.-K. Angew. Chem. Int. Ed. 2018; 57: 16152
  • 39 Stierle DB, Stierle AA, Patacini B, McIntyre K, Girtsman T, Bolstad E. J. Nat. Prod. 2011; 74: 2273
  • 40 Matsuda Y, Abe I. Nat. Prod. Rep. 2016; 33: 26

    • For selected biosynthetic studies see:
    • 41a Lo H.-C, Entwistle R, Guo C.-J, Ahuja M, Szewczyk E, Hung J.-H, Chiang Y.-M, Oakley BR, Wang CC. C. J. Am. Chem. Soc. 2012; 134: 4709
    • 41b Itoh T, Tokunaga K, Radhakrishnan EK, Fujii I, Abe I, Ebizuka Y, Kushiro T. ChemBioChem 2012; 13: 1132
    • 41c Mitsuhashi T, Barra L, Powers Z, Kojasoy V, Cheng A, Yang F, Taniguchi Y, Kikuchi T, Fujita M, Tantillo DJ, Porco JA. Jr, Abe I. Angew. Chem. Int. Ed. 2020; 59: 23772 ; Angew. Chem. 2020, 132, 23980
    • 42a Spangler JE, Sorensen EJ. Tetrahedron 2009; 65: 6739
    • 42b Okamoto R, Takeda K, Tokuyama H, Ihara M, Toyota M. J. Org. Chem. 2013; 78: 93
    • 42c Suzuki K, Yamakoshi H, Nakamura S. Chem. Eur. J. 2015; 21: 17605
    • 42d Zhu G, Zhou C, Chen S, Fu S, Liu B. Org. Lett. 2019; 21: 7809
    • 42e Powers Z, Scharf A, Cheng A, Yang F, Himmelbauer M, Mitsuhashi T, Barra L, Taniguchi Y, Kikuchi T, Fujita M, Abe I, Porco JA. Jr. Angew. Chem. Int. Ed. 2019; 58: 16141 ; Angew. Chem. 2019, 131, 16287
    • 43a Ting CP, Xu G, Zeng X, Maimone TJ. J. Am. Chem. Soc. 2016; 138: 14868
    • 43b Elkin M, Szewczyk SM, Scruse AC, Newhouse TR. J. Am. Chem. Soc. 2017; 139: 1790
  • 44 Zhang Y, Ji Y, Franzoni I, Guo C, Jia H, Hong B, Li H. Angew. Chem. Int. Ed. 2021; 60: 14869
  • 45 Du L, Robles AJ, King JB, Powell DR, Miller AN, Mooberry SL, Cichewicz RH. Angew. Chem. Int. Ed. 2014; 53: 804
  • 46 Jessen HJ, Gademann K. Nat. Prod. Rep. 2010; 27: 1168
  • 47 McClymont KS, Wang FY, Minakar A, Baran PS. J. Am. Chem. Soc. 2020; 142: 8608
  • 48 Hosomi-Sakurai Allylation. In Comprehensive Organic Name Reactions and Reagents. Wang Z. Wiley; Hoboken: 2009: 1491-1495
  • 49 Kawamura A, Kita M, Kigoshi H. Angew. Chem. Int. Ed. 2015; 54: 7073
  • 50 Lu Z, Zhang X, Guo Z, Chen Y, Mu T, Li A. J. Am. Chem. Soc. 2018; 140: 9211
  • 51 Nicolaou KC, Gray DL. F, Montagnon T, Harrison ST. Angew. Chem. Int. Ed. 2002; 41: 996
    • 52a Tokuyama T, Daly J, Witkop B. J. Am. Chem. Soc. 1969; 91: 3931
    • 52b Brown GB, Tieszen SC, Daly JW, Warnick JE, Albuquerque EX. Cell. Mol. Neurobiol. 1981; 1: 19
    • 52c Brown GB, Bradley RJ. J. Neurosci. Methods 1984; 13: 119
    • 52d Casebolt TL, Brown GB. Toxicon 1993; 31: 1113
    • 52e de Lera Ruiz M, Kraus RL. J. Med. Chem. 2015; 58: 7093
    • 53a Linford NJ, Cantrell AR, Qu Y, Scheuer T, Catterall WA. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 13947
    • 53b Li H.-L, Hadid D, Ragsdale DS. Mol. Pharmacol. 2002; 61: 905
    • 53c Wang S.-Y, Mitchell J, Tikhonov DB, Zhorov BS, Wang GK. Mol. Pharmacol. 2006; 69: 788
    • 53d Du Y, Garden DP, Wang L, Zhorov BS, Dong K. J. Biol. Chem. 2011; 286: 13151
    • 54a Märki F, Witkop B. Experientia 1963; 19: 329
    • 54b Daly JW, Witkop B, Bomer P, Biemann K. J. Am. Chem. Soc. 1965; 87: 124
    • 54c Tokuyama T, Daly J, Witkip B, Karle IL, Karle J. J. Am. Chem. Soc. 1968; 90: 1917
    • 55a Kurosu M, Marcin LR, Grinsteiner TJ, Kishi Y. J. Am. Chem. Soc. 1998; 120: 6627
    • 55b Logan MM, Toma T, Thomas-Tran R, Du Bois J. Science 2016; 354: 865
    • 55c Guo Y, Guo Z, Lu JT, Fang R, Chen SC, Luo T. J. Am. Chem. Soc. 2020; 142: 3675
    • 56a Fraga BM. Phytochem. Anal. 1994; 5: 49
    • 56b Liu M, Wang WG, Sun HD, Pu JX. Nat. Prod. Rep. 2017; 34: 1090
  • 57 Li C, Lee D, Graf TN, Phifer SS, Nakanishi Y, Burgess JP, Riswan S, Setyowati FM, Saribi AM, Soejarto DD, Farnsworth NR, Falkinham JO, Kroll DJ, Kinghorn AD, Wani MC, Oberlies NH. Org. Lett. 2005; 7: 5709
    • 58a Richter MJ. R, Schneider M, Brandstätter M, Krautwald S, Carreira EM. J. Am. Chem. Soc. 2018; 140: 16704
    • 58b Wein LA, Wurst K, Angyal P, Weisheit L, Magauer T. J. Am. Chem. Soc. 2019; 141: 19589
    • 58c Zhang X, King-Smith E, Dong L.-B, Yang L.-C, Rudolf JD, Shen B, Renata H. Science 2020; 369: 799
  • 59 Schneider M, Richter MJ. R, Carreira EM. J. Am. Chem. Soc. 2020; 142: 17802