Antimicrobial Formulation of Chrysopogon zizanioides Essential Oil in an Emulsified Lotion for Acne

Authors
Fadilah Kurrimboccus, Ané Orchard, Michael Paul Danckwerts, Sandy van Vuuren

Affiliation
Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

Key words
acne, essential oil, Vetiveria zizanioides, HLB, emulsion, stability

ABSTRACT
Acne is a skin condition arising from excess sebum production and microbial overgrowth within the pilosebaceous unit. Several commercial essential oils have shown promising activity against acne-related pathogens. Due to their volatility and thermal instability, the formulation of essential oils into commercial products remains a pharmaceutical challenge. Thus, this study aimed to develop a viable anti-acne topical treatment as an oil-in-water emulsified lotion to overcome these challenges. Chrysopogon zizanioides (vetiver) displayed noteworthy antimicrobial activity with a mean minimum inhibitory concentration of 0.14 mg/mL against Cutibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. Emulsified lotions containing C. zizanioides were developed through the hydrophilic-lipophilic balance approach. At tested hydrophilic-lipophilic balance values of 8, 9, and 10, C. zizanioides emulsified lotions displayed maximum stability at hydrophilic-lipophilic balance 9 with a minimum change in mean droplet size and polydispersity index of 20.61 and 33.33%, respectively, over 84 days. The C. zizanioides emulsified lotion at optimum hydrophilic-lipophilic balance 9 completely inhibited the growth of C. acnes and killed S. aureus, S. epidermidis, and S. pyogenes within 24 h. Additionally, the lotion retained antimicrobial activity against these test micro-organisms over the 84-day stability test period. Thus, the C. zizanioides emulsified lotion demonstrated physical stability and antimicrobial efficiency, making it an ideal natural product anti-acne treatment.

Introduction
Acne is a disease of the skin arising from the pilosebaceous unit [1]. It is the 8th most prevalent disease worldwide and affects approximately 80% of all adults at some point during their lifetime [2]. Although not a fatal condition, it can lead to permanent scarring and in severe cases, facial disfigurement [1]. Current anti-acne treatments on the market often consist of lengthy antibiotic regimens, which contribute to the antibiotic resistance crisis experienced worldwide. Evidence of emerging resistance is seen by studies that have identified 50% of Cutibacterium acnes strains being resistant to topical macrolides [3], as well as resistance towards doxycycline, minocycline, and trimethoprim-sulphamethoxazole, all commonly used in the treatment of acne [4, 5]. Ad-
Additionally, the current treatments are not without side effects, which may cause poor patient compliance and contribute towards the development of antibiotic resistance [6]. Moreover, a large percentage of people attempt to self-diagnose and self-treat acne as they cannot afford expensive clinician fees [7]. This highlights the need for readily available alternative herbal therapies that do not contribute to resistance [8].

EOs provide a feasible alternative to antibiotics with a range of bioactivities, extending from antimicrobial to antioxidant and anti-inflammatory properties [9]. A total of 98 EOs have been recommended for dermatological use, of which 49 were specifically identified for the treatment of acne [10]. A previous study [11] identified Chrysopogon zizanioides (L.) Roberty (vetiver) as the most antimicrobially effective EO out of 19 commercial EOs tested against the causative pathogens of acne.

Due to the volatility, water insolubility, and thermal instability of EOs, their development into stable formulations remains a pharmaceutical challenge. Preparations containing EOs require precise formulation methods to produce a system that allows them to be delivered to the cutaneous tissue without compromising their stability or efficacy [12, 13]. The emulsification of an EO presents an avenue of opportunity in order to overcome these challenges, and improve on the stability of formulations [14]. Previous studies have investigated the formulation of EO emulsions for various applications, from food preservation to cosmetic use [15–17]. However, these studies often investigate either the physical stability or the antimicrobial effectiveness of such formulations and the link between the two aspects are often overlooked. Both aspects are critical for the overall performance of the formulation, as the physiochemical properties have been found to play a decisive role in the efficacy of a formulation [18]. It is thus critical to investigate the physical stability and antimicrobial efficacy of a formulation in tandem to ensure optimum performance of both. Hence, this study set out to validate the antimicrobial activity of C. zizanioides EO, prepare a stable emulsified lotion thereof, and concurrently investigate the antimicrobial efficacy of the resulting formulation.

### Results and Discussion

The first component of the study was to validate the antimicrobial activity of C. zizanioides EO against the four selected pathogen reference strains, and the MIC values (0.04–0.25 mg/mL) are shown in Table 1.

The MIC values of C. zizanioides EO obtained in this study were slightly more effective than previous reports of MIC values (both 0.50 mg/mL against C. acnes and Staphylococcus aureus) [19, 20]. Analysis of the GC-MS data of the C. zizanioides EO revealed that a different chemotype from the previous studies was investigated, as there were no major chemical constituents in common, therefore discrepancies in antimicrobial activity were expected. Currently, data on the bioactivities of C. zizanioides EO remains largely unexplored. It is thus likely that C. zizanioides EO has not been intensively studied due to its complex structure with over 170 chemical constituents [21]. Additionally, other studies often employ unreliable antimicrobial methods such as disc diffusion [22–24], which makes comparison a challenge. Therefore, the antimicrobial investigation and formulation development investigated in this study sheds light and reports on a novel application of C. zizanioides EO.

### Table 1  MIC values (mg/mL) of C. zizanioides EO against acne pathogen reference strains (n = 3).

<table>
<thead>
<tr>
<th>Sample</th>
<th>MIC (mg/mL)</th>
<th>Cutibacterium acnes (ATCC 11827)</th>
<th>Staphylococcus epidermidis (ATCC 2223)</th>
<th>Staphylococcus aureus (ATCC 25923)</th>
<th>Streptococcus pyogenes (ATCC 12344)</th>
<th>Mean MIC ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. zizanioides EO</td>
<td></td>
<td>0.25 ± 0.00</td>
<td>0.10 ± 0.02</td>
<td>0.17 ± 0.09</td>
<td>0.04 ± 0.00</td>
<td>0.14 ± 0.09</td>
</tr>
<tr>
<td>Positive control – Ciprofloxacin (µg/mL)</td>
<td>0.04 ± 0.00</td>
<td>0.02 ± 0.00</td>
<td>0.08 ± 0.00</td>
<td>0.31 ± 0.00</td>
<td>0.11 ± 0.13</td>
<td></td>
</tr>
<tr>
<td>Negative control – Acetone</td>
<td>&gt; 8.00</td>
<td>&gt; 8.00</td>
<td>&gt; 8.00</td>
<td>&gt; 8.00</td>
<td>N/A*</td>
<td></td>
</tr>
<tr>
<td>Culture control</td>
<td>&gt; 8.00</td>
<td>&gt; 8.00</td>
<td>&gt; 8.00</td>
<td>&gt; 8.00</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

*N/A – not applicable as values cannot be calculated from current data set.

### Table 2  GC-MS analysis (major compounds) of C. zizanioides essential oil.

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Constituent*</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.9</td>
<td>Vetiselinolenol</td>
<td>3.32</td>
</tr>
<tr>
<td>80.3</td>
<td>β-Vetivone</td>
<td>2.67</td>
</tr>
<tr>
<td>80.5</td>
<td>Khusimol</td>
<td>7.93</td>
</tr>
<tr>
<td>81.9</td>
<td>Isovalencenol</td>
<td>7.39</td>
</tr>
<tr>
<td>82.1</td>
<td>α-Vetivone</td>
<td>3.73</td>
</tr>
<tr>
<td>101.2</td>
<td>Khusenic acid</td>
<td>15.87</td>
</tr>
<tr>
<td>N/A</td>
<td>Minor constituents</td>
<td>54.43</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>95.34</td>
</tr>
</tbody>
</table>

*Only major constituents (> 2.5%) are listed in detail for brevity. Complete list of chemical constituents are available on request.
Once the efficacy of *C. zizanioides* EO was validated, the ensuing step was the incorporation of the EO into a formulation. In order to produce stable emulsified lotion of *C. zizanioides* EO, the HLB was employed. According to Orafidiya and Oladimeji [18], optimal stability is achieved when an emulsion is formulated at an HLB value that yields the smallest MDD. In addition, the PDI is a measure of the standard deviation of the MDD and may also be employed as a useful parameter. Fluctuations in droplet diameter may occur, especially in the initial days after preparation as the two phases are in dynamic equilibrium and the oil droplets are continuously being disrupted and reformed [25]. Therefore, a large change in the MDD or PDI over time can be viewed as a precursor of physical instability mechanisms (such as creaming and cracking). Hence, *C. zizanioides* emulsified lotions were prepared at HLB 8, 9, and 10 [11] and were all monitored over 84 days to find the HLB at which the emulsion displayed the minimum change in MDD and PDI. This HLB would reveal the emulsified lotion of peak physical stability.

Initial measurement of the MDD of the *C. zizanioides* EO emulsified lotions showed a trend of increasing MDD with an increase in the HLB (Fig. 1a). The lowest MDD was obtained for the HLB 8 emulsified lotion (1358 nm) while the highest MDD was obtained at HLB 10 (1745 nm). After 84 days, similar increases in the MDD were seen with all HLB values (19.81, 20.61, and 20.57% for HLB 8, 9, and 10, respectively) for the emulsified lotions. As similar rates of destabilisation were obtained for each emulsion regardless of HLB, the MDD could not be used as an indicator of stability.

The initial PDI for all three HLB values of the emulsified lotions were acceptable (< 0.5) and indicated uniformly sized droplets had formed for each HLB value on day 1 (Fig. 1b). However, a sharp increase of 140.23% over 84 days was observed for the PDI of the HLB 10 emulsified lotion, followed by an increase of 42.03% for the HLB 8 emulsified lotion. This indicates that *C. zizanioides* EO lotion at these HLBs might present with a limited shelf life. A clear minimal percentage change of 33.33% in the PDI (0.279 to 0.372) was noted for emulsified lotions formulated at an HLB of 9, signifying it to be the most resistant to fluctuations and internal system changes. The *C. zizanioides* lotion emulsified at an HLB of 9 could therefore be concluded to display optimum physical sta-
bility and was selected for further antimicrobial assessment. In order to assess whether the stable emulsified *C. zizanioides* lotion at HLB 9 displayed antimicrobial activity, time-kill assays were undertaken.

Total bactericidal activity was observed against *S. aureus*, *S. epidermidis*, and *S. pyogenes* within 24 h, measured with log CFU/mL (Fig. 2). As a negative control, a SCCO lotion was prepared and assayed. Carrier oils, in general, lack the potent chemical constituents present in EOs to have notable antimicrobial effects. The SCCO lotion showed no antimicrobial activity, as expected, and displayed comparable growth to the culture controls. This shows that none of the formulation excipients possessed or contributed towards antimicrobial activity, and therefore the efficacy of the *C. zizanioides* emulsified lotion (HLB 9) can be solely attributed to the *C. zizanioides* EO. The positive control ciprofloxacin eliminated *S. aureus*, *S. epidermidis*, and *S. pyogenes* within 6–24 h, demonstrating susceptibility of the acne pathogen reference strains.

While *S. aureus*, *S. epidermidis*, and *S. pyogenes* were all killed within 24 h, the *C. zizanioides* emulsified lotion (HLB 9) displayed a slightly faster kill dynamic against *S. pyogenes*, as can be seen with a lower starting log CFU/mL. This is in accordance with the antimicrobial activity of the neat *C. zizanioides* EO, where *S. pyogenes* proved to be the most susceptible pathogen, with the lowest MIC of 0.04 mg/mL. A previous study [26] found three strains of *Streptococcus*, including *S. pyogenes*, to be more susceptible to EO when compared to *S. aureus*. As a Gram-positive microorganism, *S. pyogenes* consists of a thick peptidoglycan cell wall that protects it from the invasion of antimicrobial agents. However, certain chemical constituents have been shown to not only penetrate this cell wall, but enhance the permeability and thereby facilitate cell death, as observed in the case of *S. pyogenes* [27]. Therefore, the antimicrobial efficacy results of both the neat *C. zizanioides* EO and *C. zizanioides* emulsified lotion (HLB 9) are in accordance with each other.

Due to irreproducible results and inconsistencies observed in the growth of *C. acnes* on aerobic agar plates, the more reproducible time-kill method was employed as a measure of inhibition. The *C. zizanioides* emulsified lotion (HLB 9) was observed to completely inhibit *C. acnes* as no signs of turbidity were seen after 72 h of incubation, signifying total elimination of the bacterial load. The positive control, ciprofloxacin, also presented with clear broth, while the negative control (SCCO lotion) and the culture control (C. *acnes*) presented with turbid broth, indicating microbial growth. Thus, the *C. zizanioides* emulsified lotion (HLB 9) was comparable in activity to the commercial antibiotic ciprofloxacin against *C. acnes*. As *C. acnes* is the most important pathogen involved in acne [28], the prevention of its growth provides an excellent marker of the potential of the *C. zizanioides* emulsified lotion (HLB 9) as a suitable treatment regimen.

As changes in physical stability were noted in the emulsion system with time, antimicrobial assays were repeated at the end of the storage period to ensure maintenance of antimicrobial activity. The aged (84 days) *C. zizanioides* emulsified lotion (HLB 9) displayed total elimination of *S. aureus*, *S. epidermidis*, and *S. pyogenes*. The positive control, ciprofloxacin, remained at 100% inhibition, while the negative control, SCCO lotion, and the culture controls for *S. aureus*, *S. epidermidis* and *S. pyogenes* showed growth on their respective agar plates. The *C. zizanioides* emulsified lotion (HLB 9) also displayed complete inhibition of *C. acnes* 84 days after preparation. The positive control, ciprofloxacin, negative control (SCCO lotion), and the culture control (*C. acnes*) responded as expected. Therefore, regardless of fluctuations in MDD and PDI over time and changes in emulsion stability, the *C. zizanioides* emulsified lotion (HLB 9) remained antimicrobially effective against *C. acnes*, *S. aureus*, *S. epidermidis*, and *S. pyogenes* over an extended shelf life of 84 days. As EO products are often prone to degradation due to the volatility of the EOs themselves, the retention of antimicrobial activity over an extended period is a worthy point for consideration. While previous studies investigated the physical stability of EO emulsions over a long-term period, concurrent antimicrobial studies were conducted, as once-off and long-term data is lacking [25,29–36]. Only two studies could be found with extended antimicrobial activity studies [37,38], however, these were conducted over a significantly shorter time period (42 days and 20 days, respectively) compared to the current study (84 days). As the maintenance of antimicrobial activity is a priority required for the application of EO emulsions, this critical step seems to have been overlooked in the past. This study thus adds value demonstrating a full antimicrobial assessment carried out to ensure efficacy after three months of storage.

![Fig. 2](image-url) Time-kill dynamics of stable *C. zizanioides* emulsified lotion (at HLB 9) against acne-inducing pathogens (a) *S. aureus* (b) *S. epidermidis*, and (c) *S. pyogenes*. Blue-grey disrupted line: *C. zizanioides* emulsified lotion (HLB 9), black disrupted line: positive control (0.01 mg/mL ciprofloxacin), black solid line: negative control (SCCO lotion), and grey dotted line: culture control.
This study successfully prepared an anti-acne *C. zizanioides* emulsified lotion that demonstrated optimum physical stability at HLB 9 and optimum antimicrobial activity (total bactericidal activity against *S. aureus*, *S. epidermidis*, and *S. pyogenes* within 24 h and total inhibition of *C. acnes*). Despite the volatility and instability of EOs and their products, the *C. zizanioides* emulsified lotion formulated in this study maintained its bioactivity for a minimum of three months. This demonstrates the long-term viability of the formulation and provides proof of the practicality of this concept. Thus, *C. zizanioides* emulsified lotion qualifies as a strong candidate for the topical treatment of acne.

### Materials and Methods

#### Essential oil procurement

The *C. zizanioides* EO was procured from Prana Monde and a certificate of analysis containing the GC-MS data was provided by the supplier (Table 2).

#### Preparation of cultures

Test organisms were selected based on their pathogenesis in acne and were procured from Davies Diagnostics. The facultative anaerobes *S. aureus* reference strain, (ATCC 25923) and *S. epidermidis* (ATCC 2223) were cultured in Tryptone Soya broth (Oxoid) while *S. pyogenes* (ATCC 12 344) was cultured in Haemophilus test medium supplemented with nicotinamide adenine dinucleotide (Oxoid). Incubation was carried out at 37°C for 24 h. The aerotolerant anaerobe *C. acnes* (ATCC 11 827) was cultured in Thioglycolate broth (Oxoid) and incubated at 37°C under anaerobic conditions in a CO2 incubator (5% CO2) for 72 h.

#### Validation of antimicrobial activity of *Chrysopogon zizanioides* essential oil

The broth microdilution method [19] was used to determine the MIC values of the EO. A 100 µL *C. zizanioides* EO, diluted in acetone to obtain a stock concentration of 32.00 mg/mL, and 100 µL of respective broth was introduced into the first well of each column of a microtitre plate (Thermo Fisher Scientific). Doubling serial dilutions were then performed on each sample and test culture (100 µL) containing approximately 1 × 10⁶ CFU/mL was transferred into each well. After incubation (as per respective pathogen conditions), 40 µL of indicator INT (Sigma-Aldrich) at 0.04 mg/mL were added to each well and the MIC was interpreted as the first clear well, i.e., lowest concentration of sample required to inhibit microbial growth. All tests were performed in triplicate (n = 3) on consecutive days. Ciprofloxacin (purity ≥ 98.0%), purchased from Sigma-Aldrich (100 µL of a concentration of 0.01 mg/mL), was used as a positive control to ensure microbial susceptibility. A 100 µL acetone preparation was employed as the negative control to ensure that antimicrobial activity was not as a result of the solvent. A 100 µL culture control was included to ensure viable growth of the pathogen.

#### Emulsified lotion design through hydrophilic-lipophilic balance

The aqueous phase of the emulsified lotion contained 5% w/w glycercine and 72% w/w autoclaved distilled water, while the oil phase consisted of 10% w/w *C. zizanioides* EO (HLB=7) [11], 2% w/w cetyl alcohol (HLB = 15), and 1% w/w stearic acid (HLB=15). The total emulsifier was set at 10% w/w and consisted of the hydrophilic emulsifier Tween 80 (HLB=15) and lipophilic emulsifier GMS (HLB=3.8). In order to achieve the required HLBs of 8, 9, and 10 for physical stability testing, the ratio of the hydrophilic to lipophilic emulsifier (Tweem 80: GMS) was varied to obtain each HLB value, as in the following equations:

\[
\% \text{ of Tween 80} = \frac{100 \times (\text{Desired HLB} - \text{HLB of GMS})}{\text{HLB of Tween 80} - \text{HLB of GMS}}
\]

\[
\% \text{ of GMS} = 100 - \% \text{ of Tween 80}
\]

Total quantities of all ingredients are shown in Table 3.

#### Emulsified lotion preparation

The lotions were prepared using a combination of the PIT method and ultrasonification [39,40]. The lipophilic emulsifier, GMS, was weighed and added to the oil phase ingredients (cetyl alcohol and stearic acid), while Tween 80 was dissolved in the aqueous phase (autoclaved distilled water and glycercine). The two phases were placed separately in a water bath and heated to 55°C. Once all the lipophilic components of the oil phase were melted, the beaker was removed from heat and allowed to cool to 40°C, whereupon the *C. zizanioides* EO was added and mixed thoroughly at 750 rpm on a magnetic stirrer. The aqueous phase, maintained at 55°C, was then added dropwise into the oil phase under constant stirring over a period of 30 s. The formulation was subjected to further stirring at 1500 rpm for 30 min until emulsification was achieved. To further reduce the mean oil droplet size and remove

---

**Table 3** Base formulation to prepare *C. zizanioides* emulsified lotion (40 g).

<table>
<thead>
<tr>
<th>Required HLB</th>
<th>Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><em>C. zizanioides</em> EO</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
</tr>
<tr>
<td>9</td>
<td>4.00</td>
</tr>
<tr>
<td>10</td>
<td>4.00</td>
</tr>
</tbody>
</table>

*quantity sufficient
trapped air bubbles, the formulation was placed in a sonicator bath and ultrasonicated for 120 s. The freshly formed emulsion (n = 3) was transferred and stored in appropriate sterile containers for physical stability testing through MDD and PDI.

**Physical stability testing (mean droplet size and polydispersity index) of Chrysopogon zizanioides emulsified lotion**

The MDD of emulsion at each HLB (8, 9, and 10) was measured using a Malvern Zetasizer Nanoseries at 25°C equipped with a 173°C backwards detector. To avoid multiple scattering effects, each sample was diluted 1:100 using Milli-Q water and mixed thoroughly. The MDD was expressed as a Z-average size and the PDI was also recorded as a measure of homogeneity of the emulsion [41]. Data was collected as an average of 13 runs and each measurement was performed in triplicate. Runs were repeated on day 1, 28, 56, and 84 after preparation.

**Antimicrobial validation of Chrysopogon zizanioides emulsified lotion**

For the facultative anaerobes, the adapted broth microdilution method [11] was followed. Under sterile conditions, 100 µL of the optimum culture medium, 100 µL of freshly prepared C. zizanioides emulsified lotion at optimum HLB, and 100 µL of test culture (S. aureus, S. epidermidis, or S. pyogenes containing approximately 1 × 10⁸ CFU/mL) were added into each well of the first row of a 48-well microtitre plate. Thereafter, the contents of each well (containing broth, formulation, and inoculum) were thoroughly mixed and 100 µL were transferred to the subsequent well containing 900 µL of sterile 0.90% sodium chloride (NaCl). Successive serial dilutions were carried out on each sample and the microtitre plates were then incubated as per the respective pathogen’s optimal incubation requirements. Aliquots of 50 µL samples were periodically withdrawn from the wells at 0, 3, 6, and 24 h, spread onto previously prepared agar plates (Tryptone Soya agar for S. aureus and S. epidermidis and Haemophilus agar for S. pyogenes), and incubated as per respective conditions. The number of colonies with time for each sample was quantified and the logarithm of CFU/mL present in the original well was calculated as follows:

$$\text{Log (CFU/mL)} = \log_{10} \text{colony count} \times 1 \times 10^9$$

The ensuing results were plotted accordingly. Ciprofloxacin as the positive control, SCCO lotion as the negative, and a test culture of the preserved growth. Comparable controls as stated previously (i.e., ciprofloxacin, SCCO, and test culture) were employed. All measurements were conducted in triplicate.

**Preservation of antimicrobial efficacy of Chrysopogon zizanioides emulsified lotion**

The C. zizanioides emulsified lotion at optimum HLB was stored at room temperature (25°C) for 84 days, upon which the retention of its antimicrobial efficacy over time was assessed. In a 48-well microtitre plate, 100 µL of broth, 100 µL of aged formulation (84 days), and 100 µL of test culture (S. aureus, S. epidermidis, S. pyogenes or C. acnes) were mixed in a well. The plate was sealed with a sterile seal and incubated as per the respective pathogen reference strain’s requirements. Thereafter, a 50-µL sample was removed from each well for the facultative anaerobes, the sample was spread onto Tryptone Soya agar for S. aureus and S. epidermidis and Haemophilus agar for S. pyogenes and incubated accordingly. A clear plate would indicate total inhibition and therefore the preservation of antimicrobial activity, while the presence of colonies would signify loss of efficacy. For the aerotolerant anaerobe C. acnes, the inoculated aged sample was transferred into 9.9 mL of Thioglycollate broth and incubated for a further 72 h. The absence or presence of broth turbidity was recorded for each C. zizanioides emulsified lotion sample in an identical manner to the initial assay, and comparisons between the two were drawn.

**Contributors’ Statement**

FK: experimental: data analysis, drafting of manuscript; AO, PD and SvV: supervision, conceptual design, editorial input to the manuscript.

**Acknowledgements**

We thank the University of the Witwatersrand for the provision of facilities and equipment and the University of the Witwatersrand Faculty of Health Sciences Research Committee for financial support.

**Conflict of Interest**

The authors declare that they have no conflict of interest.

**References**

Kurrimboccus F et al. Antimicrobial Formulation of... Planta Med | © 2021. Thieme. All rights reserved.