Synlett 2022; 33(02): 177-181
DOI: 10.1055/a-1691-0449
letter

s-Tetrazine: Robust and Green Photoorganocatalyst for Aerobic Oxidation of N,N-Disubstituted Hydroxylamines to Nitrones

Jiyuan Lyu
,
Tuan Le
,
Aurélie Claraz
,
Clémence Allain
,
Pierre Audebert
,
T.L. thanks the Université Paris-Saclay for the doctoral fellowships. JL thanks China Scholarship Council for the doctoral fellowship. P.A. thanks the Institut Universitaire de France for personal and financial support.


Abstract

Efficient photocatalytic aerobic oxidative dehydrogenation reactions of N,N-disubstituted hydroxylamines to nitrones were developed with an in situ generated photocatalyst based on commercially available 3,6-dichlorotetrazine. This process affords a wide range of nitrones in high yields under mild conditions. In addition, an oxidative (3+3) cycloaddition between an oxyallyl cation precursor and a hydroxylamine was also developed.

Supporting Information



Publication History

Received: 12 October 2021

Accepted after revision: 09 November 2021

Accepted Manuscript online:
09 November 2021

Article published online:
23 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Anderson LL, Kroc MA, Reidl TW, Son J. J. Org. Chem. 2016; 81: 9521
    • 1b Berthet MO, Cheviet T, Dujardin G, Parrot I, Martinez J. Chem. Rev. 2016; 116: 15235
    • 1c Brandi A, Cardona F, Cicchi S, Cordero FM, Goti A. Org. React. 2004; 1
    • 1d Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis: Novel Strategies in Synthesis, Vol. 6. Feuer H. John Wiley & Sons; Hoboken: 2008
    • 1e Merino P. C. R. Chim. 2005; 775
    • 1f Merino P, Tejero T, Delso I, Matute R. Org. Biomol. Chem. 2017; 15: 3364
    • 1g Murahashi SI, Imada Y. Chem. Rev. 2019; 119: 4684
    • 2a Barriga-Gonzalez G, Aliaga C, Olea-Azar C, Zuniga-Lopez MC, Gonzalez M, Cerecetto H. Curr. Org. Chem. 2017; 21: 2062
    • 2b Hawkins C, Davies M. Biochim. Biophys. Acta, Gen. Subj. 2014; 1840: 708
    • 2c Marco-Contelles J. J. Med. Chem. 2020; 63: 13413
    • 2d Villamena FA, Das A, Nash KM. Future Med. Chem. 2012; 4: 1171
    • 3a Lombardo M, Trombini C. Synthesis 2000; 759
    • 3b Merino P, Franco S, Merchan FL, Tejero T. Synlett 2000; 442
    • 4a Banan A, Valizadeh H, Heydari A, Moghimi A. Synlett 2017; 28: 2315
    • 4b Bartoli G, Marcantoni E, Petrini M. J. Chem. Soc., Chem. Commun. 1993; 1373
  • 5 Matassini C, Cardona F. Chimia 2017; 71: 558
    • 6a Cicchi S, Marradi M, Goti A, Brandi A. Tetrahedron Lett. 2001; 42: 6503
    • 6b Matassini C, Parmeggiani C, Cardona F, Goti A. Org. Lett. 2015; 17: 4082
    • 6c Merino P, Delso I, Tejero T, Cardona F, Goti A. Synlett 2007; 2651
    • 6d Nguyen D.-V, Prakash P, Gravel E, Doris E. RSC Adv. 2016; 6: 89238
    • 6e Parmeggiani C, Matassini C, Cardona F, Goti A. Synthesis 2017; 49: 2890
    • 6f Stoyanovsky AD, Stoyanovsky DA. Sci. Rep. 2018; 8: 15323
    • 7a Cardona F, Bonanni M, Soldaini G, Goti A. ChemSusChem 2008; 1: 327
    • 7b Cardona F, Gorini L, Goti A. Lett. Org. Chem. 2006; 3: 118
    • 7c Goti A, De Sarlo F, Romani M. Tetrahedron Lett. 1994; 35: 6571
    • 7d Prakash P, Gravel E, Nguyen DV, Namboothiri IN, Doris E. ChemCatChem 2017; 9: 2091
    • 7e Saladino R, Neri V, Cardona F, Goti A. Adv. Synth. Catal. 2004; 346: 639
    • 8a Angnes RA, Li Z, Correia CR. D, Hammond GB. Org. Biomol. Chem. 2015; 13: 9152
    • 8b Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
    • 8c Courant T, Masson G. J. Org. Chem. 2016; 81: 6945
    • 8d Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
    • 8e Kärkäs MD, Matsuura BS, Stephenson CR. Science 2015; 349: 1285
    • 8f Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
    • 8g Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 8h Meggers E. Chem. Commun. 2015; 51: 3290
    • 8i Pirtsch M, Paria S, Matsuno T, Isobe H, Reiser O. Chem. Eur. J. 2012; 18: 7336
    • 8j Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
    • 8k Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
    • 8l Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 8m Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 8n Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 8o Shaw MH, Twilton J, MacMillan DW. J. Org. Chem. 2016; 81: 6898
    • 8p Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
    • 8q Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 8r Fukuzumi S, Lee YM, Nam W. ChemSusChem 2019; 12: 3931
    • 8s Capaldo L, Ravelli D. Eur. J. Org. Chem. 2020; 2783
    • 10a Lyu J, Claraz A, Vitale MR, Allain C, Masson G. J. Org. Chem. 2020; 85: 12843
    • 10b Le T, Galmiche L, Masson G, Allain C, Audebert P. Chem. Commun. 2020; 56: 10742
    • 10c Lanzi M, Merad J, Boyarskaya DV, Maestri G, Allain C, Masson G. Org. Lett. 2018; 20: 5247
    • 10d Santacroce V, Duboc R, Malacria M, Maestri G, Masson G. Eur. J. Org. Chem. 2017; 2205
    • 10e Jarrige L, Levitre G, Masson G. J. Org. Chem. 2016; 81: 7230
    • 10f Lebee C, Languet M, Allain C, Masson G. Org. Lett. 2016; 18: 1478
    • 11a Audebert P, Miomandre F, Clavier G, Vernieres MC, Badre S, Meallet-Renault R. Chem. Eur. J. 2005; 11: 5667
    • 11b Clavier G, Audebert P. Chem. Rev. 2010; 110: 3299
    • 11c Gong Y.-H, Miomandre F, Méallet-Renault R, Badré S, Galmiche L, Tang J, Audebert P, Clavier G. Eur. J. Org. Chem. 2009; 6121
    • 11d Jullien-Macchi E, Alain-Rizzo V, Allain C, Dumas-Verdes C, Audebert P. RSC Adv. 2014; 4: 34127
    • 11e Jullien-Macchi E, Allain C, Alain-Rizzo V, Dumas-Verdes C, Galmiche L, Audibert J.-F, Berhe DestaM, Pansu RB, Audebert P. New J. Chem. 2014; 38: 3401
    • 11f Malinge J, Allain C, Galmiche L, Miomandre F, Audebert P. Chem. Mater. 2011; 23: 4599
    • 11g Qing Z, Audebert P, Clavier G, Miomandre F, Tang J, Vu TT, Méallet-Renault R. J. Electroanal. Chem. 2009; 632: 39
  • 12 Le T, Courant T, Merad J, Allain C, Audebert P, Masson G. J. Org. Chem. 2019; 84: 16139
  • 13 Le T, Courant T, Merad J, Allain C, Audebert P, Masson G. ChemCatChem 2019; 11: 5282
    • 14a Matias AC, Biazolla G, Cerchiaro G, Keppler AF. Bioorg. Med. Chem. 2016; 24: 232
    • 14b Schmid-Elsaesser R, Hungerhuber E, Zausinger S, Baethmann A, Reulen HJ. Exp. Brain Res. 2000; 130: 60
  • 15 Cordier M, Archambeau A. Org. Lett. 2018; 20: 2265
  • 16 Hu L, Rombola M, Rawal VH. Org. Lett. 2018; 20: 5384
  • 17 Nosaka Y, Nosaka AY. Chem. Rev. 2017; 117: 11302
  • 18 Sammelson RE, Olmstead MM, Haddadin MJ, Kurth MJ. J. Org. Chem. 2000; 65: 9265
  • 19 Since the presence of the superoxide anion scavenger thymoquinone did not affect the yield of 3a (85%), this seems to support the theory that the tetrazine is the oxidant of 2.
    • 20a Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
    • 20b Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
  • 21 Representative Procedure for the Synthesis of Compound 3 In a flame-dried tube (Ø = 10 mm) were placed N,N-disubstituted hydroxylamine 2 (0.1 mmol, 1 equiv), 3,6-dichlorotetrazine 1d (2 mg, 0.01 mmol, 0.1 equiv), DMAP (26 mg, 0.21 mmol, 2.1 equiv), and TFE (1 mL). The solution was flushed with a balloon of O2 for 1 min. The balloon was left on the top of the tube to maintain the O2 atmosphere, and the reaction was stirred overnight under green light irradiation. After completion, TFE was removed under vacuum, and the residue was purified by silica gel flash chromatography (PE/EtOAc, 2:1). Compound 3a: 1H NMR (300 MHz, CDCl3): δ = 8.21 (s, 2 H), 7.47 (s, 2 H), 7.40 (s, 7 H), 5.06 (s, 2 H).