Synlett 2022; 33(06): 518-530
DOI: 10.1055/a-1679-8141
account

Resorcinarene-Based Supramolecular Capsules: Supramolecular Functions and Applications

Ryo Sekiya
,
Kentaro Harada
,
Natsumi Nitta
,
Takeharu Haino
This work was supported by Grants-in-Aid for Scientific Research (A), JSPS KAKENHI (21H04685), Grants-in-Aid for Scientific Research (C) (18K05085), Grants-in-Aid for Challenging Exploratory Research, JSPS KAKENHI (20K21196, 21K19009), and Grants-in-Aid for Transformative Research Area (A), JSPS KAKENHI (Condensed Conjugation, 21H05491). Funding from The Urakami Scholarship Foundation, the Eno Scientific Foundation, and Iketani Science and Technology Foundation is gratefully acknowledged.


Abstract

A resorcinarene is a synthetic macrocycle consisting of four resorcinol molecules covalently linked by methylene bridges. The interannular bridges produce a cavitand that has a bowl-shaped structure. We have developed supramolecular capsules through Ag(I) or Cu(I) coordination-driven self-assembly of cavitands possessing 2,2′-bipyridyl arms in their upper rims. The self-assembled capsules accommodate various molecular guests and supramolecular assemblies possessing acetoxy groups. The host–guest chemistry of the molecular capsules has been applied in the fabrication of supramolecular polymers. This account describes recent developments in the supramolecular chemistry of resorcinarene-based coordination capsules and provides a brief history of resorcinarene-based capsules and related capsules.



Publication History

Received: 19 October 2021

Accepted after revision: 27 October 2021

Accepted Manuscript online:
27 October 2021

Article published online:
17 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Niederl JB, Vogel HJ. J. Am. Chem. Soc. 1940; 62: 2512
    • 2a Högberg AG. S. J. Am. Chem. Soc. 1980; 102: 6046
    • 2b Högberg AG. S. J. Org. Chem. 1980; 45: 4498
  • 3 Tunstad LM, Tucker JA, Dalcanale E, Weiser J, Bryant JA, Sherman JC, Helgeson RC, Knobler CB, Cram DJ. J. Org. Chem. 1989; 54: 1305
    • 4a Aoyama Y, Tanaka Y, Toi H, Ogoshi H. J. Am. Chem. Soc. 1988; 110: 634
    • 4b Aoyama Y, Tanaka Y, Sugahara S. J. Am. Chem. Soc. 1989; 111: 5397
    • 4c Kobayashi K, Asakawa Y, Kikuchi Y, Toi H, Aoyama Y. J. Am. Chem. Soc. 1993; 115: 2648
  • 5 Moran JR, Karbach S, Cram DJ. J. Am. Chem. Soc. 1982; 104: 5826
    • 6a Yu Y, Yang J.-M, Rebek JJr. Chem 2020; 6: 1265
    • 6b Hooley RJ, Rebek JJr. Chem. Biol. 2009; 16: 255
    • 6c Iwasawa T. Tetrahedron Lett. 2017; 58: 4217
    • 6d Pinalli R, Pedrini A, Dalcanale E. Chem. Eur. J. 2018; 24: 1010
    • 6e Murray J, Kim K, Ogoshi T, Yao W, Gibb BC. Chem. Soc. Rev. 2017; 46: 2479
    • 6f Alessandri I, Biavardi E, Gianoncelli A, Bergese P, Dalcanale E. ACS Appl. Mater. Interfaces 2016; 8: 14944
    • 6g Biros SM, Rebek JJr. Chem. Soc. Rev. 2007; 36: 93
    • 7a Galan A, Ballester P. Chem. Soc. Rev. 2016; 45: 1720
    • 7b Rue NM, Sun J, Warmuth R. Isr. J. Chem. 2011; 51: 743
  • 8 Cram DJ, Tanner ME, Thomas R. Angew. Chem., Int. Ed. Engl. 1991; 30: 1024
    • 9a MacGillivray LR, Atwood JL. Angew. Chem. Int. Ed. 1999; 38: 1018
    • 9b Rebek JJr. Angew. Chem. Int. Ed. 2005; 44: 2068
    • 9c Beyeh NK, Rissanen K. Isr. J. Chem. 2011; 51: 769
    • 9d Schröder T, Sahu SN, Anselmetti D, Mattay J. Isr. J. Chem. 2011; 51: 725
  • 10 Kobayashi K, Yamanaka M. Chem. Soc. Rev. 2015; 44: 449
  • 11 Heinz T, Rudkevich DM, Rebek JJr. Nature 1998; 394: 764
    • 12a Ajami D, Rebek JJr. J. Am. Chem. Soc. 2006; 128: 15038
    • 12b Ajami D, Rebek JJr. J. Am. Chem. Soc. 2006; 128: 5314
    • 12c Scarso A, Trembleau L, Rebek JJr. J. Am. Chem. Soc. 2004; 126: 13512
    • 12d Trembleau L, Rebek JJr. Science 2003; 301: 1219
  • 13 Amaya T, Rebek JJr. Chem. Commun. 2004; 1802
  • 14 Ajami D, Theodorakopoulos G, Petsalakis ID, Rebek JJr. Chem. Eur. J. 2013; 19: 17092 ; corrigendum: Chem. Eur. J. 2014, 20, 11609
  • 15 Kobayashi K, Shirasaka T, Yamaguchi K, Sakamoto S, Horn E, Furukawa N. Chem. Commun. 2000; 41
    • 16a Riwar LJ, Trapp N, Root K, Zenohi R, Diederich F. Angew. Chem. Int. Ed. 2018; 57: 17259
    • 16b Dumele O, Trapp N, Diederich F. Angew. Chem. Int. Ed. 2015; 54: 12339
    • 16c Twum K, Rissanen K, Beyeh NK. Chem. Rec. 2021; 21: 386
    • 16d Gropp C, Quigley BL, Diederich F. J. Am. Chem. Soc. 2018; 140: 2705
    • 17a Dalgarno SJ, Power NP, Atwood JL. Coord. Chem. Rev. 2008; 252: 825
    • 17b Pullen S, Tessarolo J, Clever GH. Chem. Sci. 2021; 12: 7269
    • 17c Yoshizawa M, Klosterman JK, Fujita M. Angew. Chem. Int. Ed. 2009; 48: 3418
    • 17d Ronson TK, Zarra S, Black SP, Nitschke JR. Chem. Commun. 2013; 49: 2476
    • 17e Pluth MD, Raymond KN. Chem. Soc. Rev. 2007; 36: 161
    • 18a Fochi F, Jacopozzi P, Wegelius E, Rissanen K, Cozzini P, Marastoni E, Fisicaro E, Manini P, Fokkens R, Dalcanale E. J. Am. Chem. Soc. 2001; 123: 7539
    • 18b Pinalli R, Boccini F, Dalcanale E. Isr. J. Chem. 2011; 51: 781
  • 19 Kobayashi K, Yamada Y, Yamanaka M, Sei Y, Yamaguchi K. J. Am. Chem. Soc. 2004; 126: 13896
    • 20a Shimoyama D, Sekiya R, Kudo H, Haino T. Org. Lett. 2020; 22: 352
    • 20b Shimoyama D, Sekiya R, Haino T. Chem. Commun. 2020; 56: 3733
    • 20c Shimoyama D, Haino T. Chem. Eur. J. 2020; 26: 3074
    • 20d Shimoyama D, Haino T. J. Org. Chem. 2019; 84: 13483
    • 20e Shimoyama D, Ikeda T, Sekiya R, Haino T. J. Org. Chem. 2017; 82: 13220
    • 20f Shimoyama D, Yamada H, Ikeda T, Sekiya R, Haino T. Eur. J. Org. Chem. 2016; 3300
    • 20g Shimoyama D, Haino T. Asian J. Org. Chem. 2020; 9: 1718
  • 21 Haino T, Kobayashi M, Chikaraishi M, Fukazawa Y. Chem. Commun. 2005; 2321
  • 22 Haino T, Kobayashi M, Fukazawa Y. Chem. Eur. J. 2006; 12: 3310
  • 23 Imamura T, Maehara T, Sekiya R, Haino T. Chem. Eur. J. 2016; 22: 3250
    • 24a Ofodile SE, Kellett RM, Smith NO. J. Am. Chem. Soc. 1979; 101: 7725
    • 24b Ofodile SE, Smith NO. J. Phys. Chem. 1983; 87: 473
  • 25 Wang AS, Matsui Y. Bull. Chem. Soc. Jpn 1994; 67: 2917
    • 26a Rechavi D, Scarso A, Rebek JJr. J. Am. Chem. Soc. 2004; 126: 7738
    • 26b Zhao Y.-L, Houk KN, Rechavi D, Scarso A, Rebek JJr. J. Am. Chem. Soc. 2004; 126: 11428
  • 27 Zhao C, Parrish RM, Smith MD, Pellechia PJ, Sherrill CD, Shimizu KD. J. Am. Chem. Soc. 2012; 134: 14306
  • 28 Haino T, Fukuta K, Iwamoto H, Iwata S. Chem. Eur. J. 2009; 15: 13286
  • 29 Tsunoda Y, Fukuta K, Imamura T, Sekiya R, Furuyama T, Kobayashi N, Haino T. Angew. Chem. Int. Ed. 2014; 53: 7243
  • 30 Harada K, Sekiya R, Maehara T, Haino T. Org. Biomol. Chem. 2019; 17: 4729
  • 31 Kobayashi M, Takatsuka M, Sekiya R, Haino T. Org. Biomol. Chem. 2015; 13: 1647
  • 32 Maehara T, Sekiya R, Harada K, Haino T. Org. Chem. Front. 2019; 6: 1561
  • 33 Harada K, Sekiya R, Haino T. Chem. Eur. J. 2020; 26: 5810
  • 34 Harada K, Sekiya R, Haino T. J. Org. Chem. 2021; 86: 4440
    • 35a Haino T. Polym. J. (Tokyo, Jpn.) 2019; 51: 303
    • 35b Haino T. Polym. J. (Tokyo, Jpn.) 2013; 45: 363
  • 36 Tsunoda Y, Takatsuka M, Sekiya R, Haino T. Angew. Chem. Int. Ed. 2017; 56: 2613
  • 37 Nitta N, Takatsuka M, Kihara S.-i, Sekiya R, Haino T. ACS Macro Lett. 2018; 7: 1308
  • 38 Nitta N, Takatsuka M, Kihara S.-i, Hirao T, Haino T. Angew. Chem. Int. Ed. 2020; 59: 16690