Synlett 2022; 33(01): 8-15
DOI: 10.1055/a-1679-7959
synpacts

Recent Progress in Synthesizing Polyethers by Use of Organocatalysts

,
Guan-Wen Yang
,
Guang-Peng Wu
This work was supported by the Zhejiang Provincial Natural Science Foundation of China (R21B040004) and the National Natural Science Foundation of China (51973186 and 91956123).


Abstract

Aliphatic polyethers are one of the most widely used polymers, whose synthesis is largely dependent on metallic compounds. Recent development of organocatalysts may break the limits of this long-standing field and infuse vitality into polyether production. In this Synpacts article, the recent advances of organocatalysts for polyether production is introduced in aspects of catalytic performance and mechanism. Moreover, attentions are paid to the latest contributions of bifunctional organoboron catalysts which can be prepared with high yields from cost-effective raw materials in two facile reactions and show excellent performance in the polyether production with remarkable catalytic efficiency, controllability on molecular weight, and explicit polymerization mechanism. Based on these advances, it is envisioned that new discoveries using organocatalysts will continue in the foreseeable future.

1 Introduction

2 Challenges in Metallic Catalysts

3 Previous Advances in Organocatalysts

4 Recent Contributions of Bifunctional Organoboron Catalysts

5 Conclusion



Publication History

Received: 18 October 2021

Accepted after revision: 27 October 2021

Accepted Manuscript online:
27 October 2021

Article published online:
22 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Chem. Rev. 2016; 116: 2170
  • 2 Brocas A.-L, Mantzaridis C, Tunc D, Carlotti S. Prog. Polym. Sci. 2013; 38: 845
    • 3a Steiner EC, Pelletier RR, Trucks RO. J. Am. Chem. Soc. 1964; 86: 4678
    • 3b Chruściel A, Hreczuch W, Janik J, Czaja K, Dziubek K, Flisak Z, Swinarew A. Ind. Eng. Chem. Res. 2014; 53: 6636
    • 3c Vandenberg EJ. US3135706, 1964
    • 4a Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BG, Hedrick JL. Chem. Rev. 2007; 107: 5813
    • 4b Theriot JC, Lim CH, Yang H, Ryan MD, Musgrave CB, Miyake GM. Science 2016; 352: 1082
    • 4c MacMillan DW. Nature 2008; 455: 304
    • 4d Gu G.-G, Wang L.-Y, Zhang R, Yue T.-J, Ren B.-H, Ren W.-M. Polym. Chem. 2021; 12: 6436
    • 5a Shen Y, Li Z.-B. Acta Polym. Sin. 2020; 51: 777
    • 5b Mezzasalma L, Dove AP, Coulembier O. Eur. Polym. J. 2017; 95: 628
    • 5c Zhong Y, Tong R. Front. Chem. 2018; 6: 641
    • 5d Zhang D, Boopathi SK, Hadjichristidis N, Gnanou Y, Feng X. J. Am. Chem. Soc. 2016; 138: 11117
    • 5e Chen Y, Liu S, Zhao J.-P. Acta Polym. Sin. 2020; 51: 1067
  • 6 Morinaga H, Ochiai B, Endo T. Macromolecules 2007; 40: 6014
  • 7 Eßwein B, Steidl NM, Möller M. Macromol. Rapid Commun. 1996; 17: 143
  • 8 Raynaud J, Absalon C, Gnanou Y, Taton D. J. Am. Chem. Soc. 2009; 131: 3201
  • 9 Naumann S, Thomas AW, Dove AP. Angew. Chem. Int. Ed. 2015; 54: 9550
    • 10a Chen Y, Shen J, Liu S, Zhao J, Wang Y, Zhang G. Macromolecules 2018; 51: 8286
    • 10b Yang G.-W, Zhang Y.-Y, Xie R, Wu G.-P. Angew. Chem. Int. Ed. 2020; 59: 16910
    • 11a Lipinski BM, Morris LS, Silberstein MN, Coates GW. J. Am. Chem. Soc. 2020; 142: 6800
    • 11b Inoue S. Makromol. Chem., Macromol. Symp. 1986; 3: 295
    • 11c Rodriguez CG, Ferrier RC, Helenic A, Lynd NA. Macromolecules 2017; 50: 3121
  • 12 Gehm R, Hutchinson J. US3833669A, 1974
    • 13a Herold RJ. US3278459A, 1966
    • 13b Raghuraman A, Babb D, Miller M, Paradkar M, Smith B, Nguyen A. Macromolecules 2016; 49: 6790
  • 14 Ferrier RC, Pakhira S, Palmon SE, Rodriguez CG, Goldfeld DJ, Iyiola OO, Chwatko M, Mendoza-Cortes JL, Lynd NA. Macromolecules 2018; 51: 1777
    • 15a Brzezińska K, Szymański R, Kubisa P, Penczek S. Makromol. Chem., Rapid Commun. 1986; 7: 1
    • 15b Rose JB. J. Chem. Soc 1956; 542
  • 16 Cationic Polymerizations: Mechanisms, Synthesis & Applications. Matyjaszewski K. CRC Press; Boca Raton: 1996
  • 17 Raynaud J, Absalon C, Gnanou Y, Taton D. Macromolecules 2010; 43: 2814
  • 18 Walther P, Krauss A, Naumann S. Angew. Chem. Int. Ed. 2019; 58: 10737
    • 19a Chakraborty D, Rodriguez A, Chen EY. X. Macromolecules 2003; 36: 5470
    • 19b Asenjo-Sanz I, Veloso A, Miranda JI, Pomposo JA, Barroso-Bujans F. Polym. Chem. 2014; 5: 6905
  • 20 Morinaga H, Ujihara Y, Yamanaka T, Nagai D, Endo T. J. Polym. Sci., Part A: Polym. Chem. 2011; 49: 4092
  • 21 Liu Y, Wang X, Li Z, Wei F, Zhu H, Dong H, Chen S, Sun H, Yang K, Guo K. Polym. Chem. 2018; 9: 154
    • 22a Isono T. Polym. J. (Tokyo, Jpn.) 2021; 53: 753
    • 22b Zhao J, Hadjichristidis N, Gnanou Y. Polimery 2014; 59: 49
    • 22c Zhang L, Nederberg F, Pratt RC, Waymouth RM, Hedrick JL, Wade CG. Macromolecules 2007; 40: 4154
    • 23a Misaka H, Tamura E, Makiguchi K, Kamoshida K, Sakai R, Satoh T, Kakuchi T. J. Polym. Sci., Part A: Polym. Chem. 2012; 50: 1941
    • 23b Misaka H, Sakai R, Satoh T, Kakuchi T. Macromolecules 2011; 44: 9099
    • 23c Reinicke S, Schmelz J, Lapp A, Karg M, Hellweg T, Schmalz H. Soft Matter 2009; 5: 2648
    • 24a Zhou H, Zhang WZ, Liu CH, Qu JP, Lu XB. J. Org. Chem. 2008; 73: 8039
    • 24b Bielawski CW, Grubbs RH. Angew. Chem. Int. Ed. 2000; 39: 2903
    • 24c Culkin DA, Jeong W, Csihony S, Gomez ED, Balsara NP, Hedrick JL, Waymouth RM. Angew. Chem. Int. Ed. 2007; 46: 2627
    • 24d Raynaud J, Ottou WN, Gnanou Y, Taton D. Chem. Commun. 2010; 46: 3203
    • 25a Billouard C, Carlotti S, Desbois P, Deffieux A. Macromolecules 2004; 37: 4038
    • 25b Carlotti S, Billouard C, Gautriaud E, Desbois P, Deffieux A. Macromol. Symp. 2005; 226: 61
    • 26a Vogler C, Naumann S. RSC Adv. 2020; 10: 43389
    • 26b Song Q, Zhao J, Zhang G, Taton D, Peruch F, Carlotti S. Eur. Polym. J. 2020; 134: 109819
  • 27 Boopathi SK, Hadjichristidis N, Gnanou Y, Feng X. Nat. Commun. 2019; 10: 293
    • 28a Zhang Y.-Y, Yang G.-W, Xie R, Yang L, Li B, Wu G.-P. Angew. Chem. Int. Ed. 2020; 59: 23291
    • 28b Yang G.-W, Zhang Y.-Y, Xie R, Wu G.-P. J. Am. Chem. Soc. 2020; 142: 12245
    • 28c Xie R, Zhang Y.-Y, Yang G.-W, Zhu X.-F, Li B, Wu G.-P. Angew. Chem. Int. Ed. 2021; 60: 19253
    • 28d Yang G.-W, Xu C.-K, Xie R, Zhang Y.-Y, Zhu X.-F, Wu G.-P. J. Am. Chem. Soc. 2021; 143: 3455
    • 28e Yang L, Zhang Y.-Y, Yang G.-W, Xie R, Wu G.-P. Macromolecules 2021; 54: 5509
    • 29a Hirahata W, Thomas RM, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2008; 130: 17658
    • 29b Childers MI, Vitek AK, Morris LS, Widger PC. B, Ahmed SM, Zimmerman PM, Coates GW. J. Am. Chem. Soc. 2017; 139: 11048
    • 29c Braune W, Okuda J. Angew. Chem. Int. Ed. 2003; 42: 64