Synlett 2022; 33(01): 40-44
DOI: 10.1055/a-1675-0018
cluster
Editorial Board Cluster

Cyanide-Free Cyanation of Aryl Iodides with Nitromethane by Using an Amphiphilic Polymer-Supported Palladium Catalyst

Toshimasa Suzuka
a   Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
,
Ryoko Niimi
a   Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
b   SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8787, Japan
,
a   Institute for Molecular Science (IMS), Okazaki, Aichi 444-8787, Japan
b   SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8787, Japan
› Author Affiliations
This work was supported by JSPS KAKENHI (Grant Number JP21K18968).


Dedicated to Professor Benjamin List in celebration of his Nobel Prize in Chemistry 2021

Abstract

A cyanide-free aromatic cyanation was developed that uses nitromethane as a cyanide source in water with an amphiphilic polystyrene–poly(ethylene glycol) resin-supported palladium catalyst and an alkyl halide (1-iodobutane). The cyanation proceeds through the palladium-catalyzed cross-coupling of an aryl halide with nitromethane, followed by transformation of the resultant (nitromethyl)arene intermediate into a nitrile by 1-iodobutane.

Supporting Information



Publication History

Received: 08 September 2021

Accepted: 20 October 2021

Accepted Manuscript online:
20 October 2021

Article published online:
16 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Present address; Department of Chemistry, University of the Ryukyus, Okinawa 903-0213, Japan.
    • 2a Kleemann A, Engel J, Kutscher B, Reichert D. Pharmaceutical Substances: Syntheses, Patents, Applications of the Most Relevant AIPs, 5th ed. Thieme; Stuttgart: 2001
    • 2b Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
    • 3a The Chemistry of the Cyano Group . Rappoport Z. Wiley Interscience; New York: 1970
    • 3b Friedrich K, Wallenfels K. The Chemistry of the Cyano Group . Rappoport Z. Wiley Interscience; New York: 1970. Chap. 2, 77
    • 4a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
    • 4b Galli C. Chem. Rev. 1988; 88: 765−792
    • 4c Rosenmund KW, Struck E. Ber. Dtsch. Chem. Ges. 1919; 52: 1749
    • 4d von Braun J, Manz G. Liebigs Ann. Chem. 1931; 488: 111
  • 5 Callen JE, Dornfeld CA, Coleman GH. Org. Synth. Coll. Vol. III 1955; 212

    • For reviews, see
    • 6a Ellis GP, Romney-Alexander TM. Chem. Rev. 1987; 87: 779
    • 6b Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 6c Yan G, Zhang Y, Wang J. Adv. Synth. Catal. 2017; 359: 4068

      For recent examples, see:
    • 7a Zhang S, Neumann H, Beller M. Chem. Eur. J. 2018; 24: 67
    • 7b Schareina T, Zapf A, Beller M. Chem. Commun. 2004; 1388
    • 7c Schareina T, Zapf A, Beller M. Tetrahedron Lett. 2005; 46: 2585
    • 7d Weissman SA, Zewge D, Chen C. J. Org. Chem. 2005; 70: 1508
    • 7e Grossman O, Gelman D. Org. Lett. 2006; 8: 1189
    • 7f Schareina T, Zapf A, Mägerlein W, Müller N, Beller M. Tetrahedron Lett. 2007; 48: 1087
    • 7g Schareina T, Jackstell R, Schulz T, Zapf A, Mägerlein W, Cotté A, Gotta M, Beller M. Adv. Synth. Catal. 2009; 351: 643
  • 8 For a review on aromatic cyanation using nonmetallic cyanide sources, see: Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
  • 9 Sundermeier M, Zapf A, Spannenberg A, Beller M. J. Organomet. Chem. 2003; 684: 50
    • 10a Sundermeier M, Zapf A, Beller M. Angew. Chem. Int. Ed. 2003; 42: 1661
    • 10b Ouchaou K, Georgin D, Taran F. Synlett 2010; 2083
    • 10c Park EJ, Lee S, Chang S. J. Org. Chem. 2010; 75: 2760
    • 10d Schareina A, Zapf A, Cotté A, Gotta M, Beller M. Adv. Synth. Catal. 2011; 353: 777
    • 10e Burg F, Egger J, Deutsch J, Guimond N. Org. Process Res. Dev. 2016; 20: 1540
  • 11 Yu P, Morandi B. Angew. Chem. Int. Ed. 2017; 56: 15693
    • 12a Sawant DN, Wagh YS, Tambade PJ, Bhatte KD, Bhanage BM. Adv. Synth. Catal. 2011; 353: 781
    • 12b Khemnar AB, Bhanage BM. RSC Adv. 2014; 4: 13405
  • 13 Niknam E, Panahi F, Khalafi-Nezhad A. Eur. J. Org. Chem. 2020; 2699
  • 14 Yang L, Liu Y.-T, Park Y, Park S.-W, Chang S. ACS Catal. 2019; 9: 3360
  • 16 Ogiwara Y, Morishita H, Sasaki M, Imai H, Sakai N. Chem. Lett. 2017; 46: 1736

    • For other examples of cyanation with nitromethane, see:
    • 17a Wang Z.-H, Ji X.-M, Hu M.-L, Tang R.-Y. Tetrahedron Lett. 2015; 56: 5067 ; (S-cyanation via halonitromethane)
    • 17b Nagase Y, Sugiyama T, Nomiyama S, Yonekura K, Tsuchimoto T. Adv. Synth. Catal. 2014; 356: 347 ; (Lewis acid-catalyzed CH cyanation via aci-nitromethane)
  • 18 TentaGel S NH2 (Rapp Polymere, Tuebingen) was used as a polymer support. Loading value = 0.26 mmol/g.

    • For reviews, see:
    • 19a Uozumi Y. Bull. Chem. Soc. Jpn. 2008; 81: 1183
    • 19b Osako T, Ohtaka A, Uozumi Y. Catalyst Immobilization: Methods and Applications . Benaglia M, Puglisi A. Wiley-VCH; Weinheim: 2019. Chap. 10, 325

      For recent selected examples of catalytic transformations using PS–PEG-supported catalysts, see:
    • 20a Koshino S, Hattori S, Hasegawa S, Haraguchi N, Yamamoto T, Suginome M, Uozumi Y, Hayashi Y. Bull. Chem. Soc. Jpn. 2021; 94: 790
    • 20b Osako T, Kaiser R, Torii K, Uozumi Y. Synlett 2019; 30: 931
    • 20c Pan S, Yan S, Osako T, Uozumi Y. Synlett 2018; 29: 1152
    • 20d Hirai Y, Uozumi Y. Synlett 2017; 28: 2966 ; and references cited therein

      For selected examples, see:
    • 21a Sarkar S, Uozumi Y, Yamada YM. A. Angew. Chem. Int. Ed. 2011; 50: 9437
    • 21b Uozumi Y, Tanaka H, Shibatomi K. Org. Lett. 2004; 6: 281
    • 21c Uozumi Y, Shibatomi K. J. Am. Chem. Soc. 2001; 123: 2919
  • 22 Uozumi Y, Suzuka T. J. Org. Chem. 2006; 71: 8644
  • 23 caution! Notably, the reaction of 2a with nitromethane in THF or CH2Cl2 exploded at 40 °C under otherwise similar conditions [1 (5 mol% Pd), Li2CO3 (4 mol equiv)].
  • 24 Czekelius C, Carreira EM. Angew. Chem. Int. Ed. 2005; 44: 612

    • For selected examples, see:
    • 25a Osako T, Srisa J, Torii K, Hamasaka G, Uozumi Y. Synlett 2020; 31: 147
    • 25b Osako T, Torii K, Hirata S, Uozumi Y. ACS Catal. 2017; 7: 7371
    • 25c Hudson R, Hamasaka G, Osako T, Yamada YM. A, Li C.-J, Uozumi Y, Moores A. Green Chem. 2013; 15: 2141
    • 25d Yamada YM. A, Arakawa T, Hocke H, Uozumi Y. Chem. Asian J. 2009; 4: 1092
    • 25e Yamada YM. A, Arakawa T, Hocke H, Uozumi Y. Angew. Chem. Int. Ed. 2007; 46: 704
    • 25f Uozumi Y, Nakao R. Angew. Chem. Int. Ed. 2003; 42: 194
  • 26 Naphthalene-1-carbonitrile (4a) [CAS Reg. No. 86-53-3] Typical Procedure (Table 1Entry 8): To a mixture of polymeric catalyst 1 (74 mg; 0.02 mmol Pd), Cs2CO3 (260 mg, 0.8 mmol), TBAF (104 mg, 0.4 mmol), 1-iodobutane (147 mg, 0.8 mmol), and 1-iodonaphthalene (2a; 102 mg, 0.4 mmol) in water (0.8 mL) was added nitromethane (73.2 mg, 1.2 mmol). The resulting mixture was stirred at 100 °C for 24 h, then cooled and filtered. The polymeric resin beads were rinsed successively with EtOAc (3 × 3 mL) and H2O (3 × 3 mL), and the recovered catalyst beads were used in subsequent recycling runs. The combined filtrates and washings were extracted with MTBE; ICP-OES analysis demonstrated that the extracts were not contaminated with leached Pd species (ICP-OES analysis: detection limit of Pd = 10 ng/mL). The extracts were then washed with brine, dried (MgSO4), and concentrated in vacuo. The crude residue was purified by chromatography [silica gel, hexane–EtOAc (4:1)] to give a colorless oil; yield: 55 mg (90%). 1H NMR (400 MHz, CDCl3): δ = 8.25 (d, J = 8.2 Hz, 1 H), 8.09 (d, J = 8.2 Hz, 1 H), 7.95-7.92 (m, 2 H), 7.71 (td, J = 7.7, 1.2 Hz, 1 H), 7.63 (td, J = 7.5, 1.4 Hz, 1 H), 7.54 (dd, J = 8.2, 7.3 Hz, 1 H): 13C NMR (101 MHz, CDCl3): δ = 133.44, 133.08, 132.80, 132.52, 128.80, 128.76, 127.71, 125.32, 125.08, 117.97, 110.35.Naphthalene-2-carbonitrile (4b) [CAS Reg. No. 613-46-7]White solid; yield 31 mg (51%).1H NMR (400 MHz, CDCl3): δ = 8.25 (s, 1 H), 7.94-7.89 (m, 3 H), 7.67-7.59 (m, 3 H): 13C NMR (101 MHz, CDCl3): δ = 134.79, 134.32, 132.39, 129.35, 129.19, 128.56, 128.20, 127.80, 126.50, 119.40, 109.52.Phenanthrene-9-carbonitrile (4c) [CAS Reg. No. 2510-55-6]White solid; yield: 71 mg (88%). 1H NMR (400 MHz, CDCl3): δ = 8.75-8.71 (m, 2 H), 8.34-8.31 (m, 1 H), 8.28 (s, 1 H), 7.97-7.95 (m, 1 H), 7.82-7.77 (m, 3 H), 7.72-7.68 (m, 1 H): 13C NMR (101 MHz, CDCl3): δ = 135.83, 131.95, 130.19, 129.99, 129.95, 129.67, 129.03, 128.38, 128.27, 127.80, 126.28, 123.25, 123.03, 118.09, 109.58.