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Introduction

Venous thromboembolism (VTE) with its manifestations
deep vein thrombosis (DVT) and pulmonary embolism
remains a major health care challenge.1 Besides its obvious
role in wound closure, thrombus formation has also been
identified as an integral part in innate immunity, termed
immunothrombosis.2 Activation of host defense systems in
response to invading pathogens is known to result in a
procoagulant environment, which promotes thrombin gen-
eration. This cross-link between humoral and cellular am-
plification pathways as part of the physiological host defense

(in this review defined as “immunothrombosis”) should be
differentiated from pathophysiological events during
“thromboinflammation,”3–5 where an overactivation of
blood cells, coagulation system, and endothelial cells in
response to pathogens or inflammatory triggers results in
pathological thrombotic events (►Fig. 1).

Immunothrombosis mostly occurs in capillaries and ven-
ules without a major harm for the host to contain and
neutralize foreign pathogens. However, when these mecha-
nisms proceed uncontrolled, it can lead to pathological
thrombosis, such as arterial thrombosis or DVT or dissemi-
nated intravascular coagulation in sepsis.6,7 In this review,
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Abstract Thrombus formation has been identified as an integral part in innate immunity, termed
immunothrombosis. Activation of host defense systems is known to result in a
procoagulant environment. In this system, cellular players as well as soluble mediators
interact with each other and their dysregulation can lead to the pathological process of
thromboinflammation. These mechanisms have been under intensified investigation
during the COVID-19 pandemic. In this review, we focus on the underlyingmechanisms
leading to thromboinflammation as one trigger of venous thromboembolism.
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Zusammenfassung Die Thrombusbildung wurde als integraler Bestandteil der angeborenen Immunität
identifiziert und als Immunthrombose bezeichnet. Es ist bekannt, dass die Aktivierung
von Wirtsabwehrsystemen zu einer pro-thrombotischen Umgebung führt. In diesem
System interagieren sowohl zelluläre Bestandteile als auch lösliche Faktoren
miteinander, die bei einer Dysregulation den pathologischen Prozess der Thromboinf-
lammation induzieren können. Diese Mechanismen wurden während der COVID-19-
Pandemie verstärkt untersucht. In dieser Übersichtsarbeit konzentrieren wir uns auf die
zugrunde liegenden Mechanismen, die zur Thromboinflammation führen als ein
Auslöser der venösen Thromboembolien.
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we focus on thromboinflammation as a driver of VTE and the
novel insights into the underlying mechanisms.

Cellular Players and NETs

Mouse studies have revealed that monocytes, neutrophils,
and platelets, in concert with the endothelium, are involved
in the development of DVT.6 Different triggers such as
ischemic events, infections, or toxins can induce endothelial
dysfunction.8 For example, endothelial activation in endo-
toxemia culminates in augmented thrombus formation
mediated through ICAM-1 (intercellular adhesion mole-
cule-1) and TLR-1 (toll-like receptor 1).9 In addition, direct
pathogen interaction with endothelial cells can stimulate
the release of different mediators.10 Hypoxia is another
pathological condition that leads to endothelial dysfunction
characterized by increased permeability, a proinflamma-
tory state, and decreased anticoagulant features.11 Specifi-
cally, hypoxia induces upregulation of von Willebrand
factor (VWF).12 Mast cells located in the venous vessel
wall release their mediators in response to reduced blood
flow and further activate endothelium, which leads to
Weibel–Palade body release.13 Especially VWF release
from Weibel–Palade bodies is crucial for deep vein throm-
bus formation by mediating platelet adhesion via glycopro-
tein Ibα (GPIbα).14,15 Platelet adhesion leads to leukocyte
recruitment to the vessel wall and thereby activating innate
immunity.5 Consistently, GPIbα-deficient mice showed im-
paired platelet and leukocyte accumulation along the en-
dothelium.6 In addition, platelets themselves sense
infection and can be activated by pathogens. Consequently,
they form aggregates, trigger the coagulation cascade, and
recruit neutrophils and monocytes to prevent the spread of
pathogens, thereby actively contributing to thromboinflam-

mation.16 Furthermore, clinical trials demonstrated that
antiplatelet therapy is beneficial in preventing recurrent
venous thromboembolic events.17,18

Leukocyte recruitment is essential for the development of
DVT.6,19 The activation of the coagulation system in venous
thrombosis depends on blood-derived tissue factor (TF),
which is mainly released by monocytes and locally activated
by protein disulfide isomerase.20,21 Moreover, neutrophil
extracellular traps (NETs) particularly contribute to immu-
nothrombosis by building a scaffold of chromatin and in-
flammatory and prothrombotic proteins and entrap cells,
including activated platelets, enhancing thrombus formation
as a positive feedback loop.22–25 Direct interaction with
pathogens or microbial components, cytokines, and comple-
ment factors can induce the release of NETs.26 Notably, the
formation of NETs is promoted by neutrophil interaction
with activated platelets.27 If NETosis is inhibited28 or NETs
are dissolved by DNase,6,25 mice are protected from devel-
opment of DVT in a stenosis model.

AddressingNETosis and cell recruitment in venous throm-
bosis promises new therapeutic targets in the prophylaxis
and therapy of VTE.

Complement Factors and Cytokines

Innate immune cells are the main cellular drivers of immu-
nothrombosis as described above. In addition, this process is
molecularly regulated by the crosstalk between the coagula-
tion cascade, the complement system, and the cytokines. The
complement system can be activated via several pathways
and several complement factors can activate platelets, neu-
trophils, induce endothelial secretion of VWF, and cause
endothelial damage.29–32 The complement system is an
important host defense mechanism that involves a cascade

Fig. 1 Cellular players and soluble mediators driving immunothrombosis and thromboinflammation.
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of processes, leading to the formation of the terminal mem-
brane attack complex (MAC) C5b-9. MAC creates a trans-
membrane channel, triggering cell lysis and death when
inserted into the cell membrane of an infected cell or directly
onto a pathogen.31 When these physiological defenses are
hyperactivated, they result in excess endothelial damage that
can serve as foci for thrombosis. Besides the endothelial
damage caused by the complement system, which increases
the thrombotic risk, the individual complement components
are prothrombotic. Complement component 5a (C5a), for
instance, can upregulate the activity of TF and plasminogen
activator inhibitor-1 (PAI-1) and can activate neutrophils,
resulting in promotion in the formation of NETs.31 This
corresponds to the findings seen in a mouse model where
susceptibility to DVTstrongly correlates with C5a levels,33 as
well as in humans where high levels of the C3 are associated
with a high risk of DVT.34

Cytokines on the other hand, which are proteins secret-
ed by various cells including immune cells, serve as an
important innate defense mechanism as they recruit
adaptive immune cells, and regulate a wide range of
processes in the immune system.35 Cytokines have pro-
thrombotic effects, such as interleukin-6 which increases
platelet production and activity, increases the expression
of TF on endothelial cells and monocytes, and can also give
rise to endothelial dysfunction.36,37 Interferon-γ similarly
increases platelet production and impairs the vascular
endothelium, which in turn increases prothrombotic
effects.37 Interleukin-2 upregulates PAI-1 which can de-
crease fibrinolysis.37 It is important to note that not only
inflammation causes thrombosis but thrombosis can in
turn directly trigger inflammation and a tight, bidirection-
al connection exists between inflammation and
thrombosis.

Intervening in these cross-talks promises future thera-
peutic options.

COVID-19

During the coronavirus disease 2019 (COVID-19) pandemic,
increased incidences of thrombotic complications have been
observed.38 The mechanisms contributing to increased
thrombosis in COVID-19 involve extensive cross-talk be-
tween hemostasis and the immune system.39 In COVID-19
there are two entities leading to immunothrombosis and
thromboinflammation.

One is local immunothrombosis in pulmonary vessels
mediated by the infection of alveolar epithelium with the
pathogen SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) via the ACE2 (angiotensin converting en-
zyme 2) receptor. This leads to a release of inflammatory
cytokines such as interleukin-6 and tumor necrosis factor
and chemokines such as interleukin-8 and CCL (chemokine
[C–C motif] ligand)2 and CCL340,41 which thereby activate
epithelial cells, monocytes, and neutrophils. Endothelial
cells themselves can also be infected by SARS-CoV-2 via
the ACE2 receptor leading to activation and dysfunction.
This leads to the activation of the coagulation system and by

activating platelets the proinflammatory state is further-
more triggered leading to local coagulation lesions.42,43

Interleukin-6 levels show a correlation with fibrinogen
levels in COVID-19 patients supporting the theory of
thromboinflammation.44

In addition to the local immunothrombosis/thromboin-
flammation in COVID-19 patients, the infection can also lead
to a systemic hypercoagulable state, leading to macro- and
microvascular thrombosis as a result of thromboinflamma-
tion. Theoveractivationof the complement system leads to the
activation of the alternative and lectin pathway which inter-
acts with the coagulation pathway.45,46 Furthermore SARS-
CoV-2 stimulates the ACE2 receptor and thereby disrupts the
renin–angiotensin system, which leads to vasoconstriction
and proinflammatory cytokine release,47 which can trigger a
cytokine storm and a systemic inflammatory response. The
systemic cytokine release activates endothelial cells in the
whole organism leading to endothelial dysfunction.48 Further-
more, the impact of NETs in COVID-19 has been extensively
described to contribute to the procoagulant and proinflam-
matory state.49 Autopsy studies revealed the occurrence of
NETs in lungs from deceased COVID-19 patients.50–52 More-
over, soluble indicators of NETs have been widely detected in
theplasmaand sera ofCOVID-19patients.53Most importantly,
NETs in cooperationwith TFand the complement systemwere
associated with thrombotic events.54–56

Increased levels of antiphospholipid antibodies have been
detected in critically ill patients with COVID-19.57,58 In the
antiphospholipid syndrome, these antibodies remain elevated
over time and are known for the development of thromboem-
bolic events. Their role in the development of thromboinflam-
mation in COVID-19 remains controversial, as they are
transientlyelevated inmanyacute illnesses and theunderlying
mechanisms are not yet clearly understood.59,60

Also platelets have been proposed to be prothrombotic
players in COVID-19.61 The majority of studies found hyper-
activated platelets during SARS-CoV-2 infection.

Several therapeutic intervention strategies to reduce the
risk of developing thrombosis have been proposed to be
useful in COVID-19 pathology.62 They include direct target-
ing of the coagulation cascade, antiplatelet drugs, inhibitors
of NET formation as well as complement and cytokine
blockade. However, effective treatment options are still
lacking.

Conclusion

The mechanisms leading to VTE are complex and closely
linked to the innate immune system as well as to inflamma-
tory processes (►Fig. 1). The most recent and prominent
example for these close interactions is the current COVID-19
pandemic with its high incidences of thrombotic
complications.

Unraveling these pathomechanisms promises future ther-
apeutic strategies to prevent thromboembolic complications.
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