Synthesis 2022; 54(02): 295-314
DOI: 10.1055/a-1645-3254
short review

Transition Metal Complex Catalyzed Photo- and Electrochemical (De)hydrogenations Involving C=O and C=N Bonds

Igor Fokin
a   Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
,
Kai-Thorben Kuessner
a   Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
,
Inke Siewert
a   Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
b   International Center for Advanced Energy Studies, Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
› Author Affiliations
We grateful acknowledge support from the Georg-August-Universität Göttingen.


Abstract

Herein, we summarize the photo- and electrochemical protocols for dehydrogenation and hydrogenations involving carbonyl and imine functions. The three basic principles that have been explored to interconvert such moieties with transition metal complexes are discussed in detail and the substrate scope is evaluated. Furthermore, we describe some general thermodynamic and kinetic aspects of such electro- and photochemically driven reactions.

1 Introduction

2 Dehydrogenation Reactions

2.1 Electrochemical Dehydrogenations Using High-Valent Metal Species

2.2 Electrochemical Dehydrogenations Involving Metal Hydride species

2.3 Photochemically Driven Dehydrogenation

3 Hydrogenation Reactions

3.1 Electrochemical Protocols

3.2 Photochemical Protocols

4 Conclusion

5 Abbreviations

Supporting Information



Publication History

Received: 14 August 2021

Accepted after revision: 15 September 2021

Accepted Manuscript online:
15 September 2021

Article published online:
23 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected recent reviews:
    • 1a Ratovelomanana-Vidal V, Genêt J.-P. J. Organomet. Chem. 1998; 567: 163
    • 1b Naota T, Takaya H, Murahashi SI. Chem. Rev. 1998; 98: 2599
    • 1c Clapham SE, Hadzovic A, Morris RH. Coord. Chem. Rev. 2004; 248: 2201
    • 1d Noyori R, Sandoval CA, Muñiz K, Ohkuma T. Philos. Trans. R. Soc., A 2005; 363: 901

    • See also discussion of this article:
    • 1e Mason R. Philos. Trans. R. Soc., A 2005; 363: 1035
    • 1f Ikariya T, Blacker AJ. Acc. Chem. Res. 2007; 40: 1300
    • 1g Ito M, Ikariya T. Chem. Commun. 2007; 5134
    • 1h Malacea R, Poli R, Manoury E. Coord. Chem. Rev. 2010; 254: 729
    • 1i Xie JH, Zhu SF, Zhou QL. Chem. Rev. 2011; 111: 1713
    • 1j Bartoszewicz A, Ahlsten N, Martin-Matute B. Chem. Eur. J. 2013; 19: 7274
    • 1k Zhao B, Han Z, Ding K. Angew. Chem. Int. Ed. 2013; 52: 4744
    • 1l Xie J.-H, Bao D.-H, Zhou Q.-L. Synthesis 2014; 47: 460
    • 1m Chelucci G, Baldino S, Baratta W. Acc. Chem. Res. 2015; 48: 363
    • 1n Younus HA, Su W, Ahmad N, Chen S, Verpoort F. Adv. Synth. Catal. 2015; 357: 283
    • 1o Foubelo F, Nájera C, Yus M. Tetrahedron: Asymmetry 2015; 26: 769
    • 1p Wang H, Wen J, Zhang X. Chem. Rev. 2021; 121: 7530

      Selected recent reviews:
    • 2a Morris RH. Chem. Soc. Rev. 2009; 38: 2282
    • 2b Junge K, Schroder K, Beller M. Chem. Commun. 2011; 47: 4849
    • 2c Hoyt JM, Shevlin M, Margulieux GW, Krska SW, Tudge MT, Chirik PJ. Organometallics 2014; 33: 5781
    • 2d Bauer I, Knölker HJ. Chem. Rev. 2015; 115: 3170
    • 2e Chakraborty S, Bhattacharya P, Dai H, Guan H. Acc. Chem. Res. 2015; 48: 1995
    • 2f Li YY, Yu SL, Shen WY, Gao JX. Acc. Chem. Res. 2015; 48: 2587
    • 2g Morris RH. Acc. Chem. Res. 2015; 48: 1494
    • 2h Werkmeister S, Neumann J, Junge K, Beller M. Chem. Eur. J. 2015; 21: 12226
    • 2i Zell T, Milstein D. Acc. Chem. Res. 2015; 48: 1979
    • 2j Morris RH. Chem. Rec. 2016; 16: 2640
    • 2k Filonenko GA, van Putten R, Hensen EJ. M, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
    • 2l Kallmeier F, Kempe R. Angew. Chem. Int. Ed. 2018; 57: 46
    • 2m Alig L, Fritz M, Schneider S. Chem. Rev. 2019; 119: 2681
  • 3 Spath P. L., Mann M. K.; Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming, report, September 28, 2000; National Renewable Energy Lab.: Golden (Colorado), 2000; https://digital.library.unt.edu/ark:/67531/metadc720938/ (accessed Oct 20, 2021), University of North Texas Libraries, UNT Digital Library.
    • 4a Ciamician G. Science 1912; 36: 385
    • 4b Protti S, Dondi D, Fagnoni M, Albini A. Green Chem. 2009; 11: 239
    • 4c Ravelli D, Dondi D, Fagnoni M, Albini A. Chem. Soc. Rev. 2009; 38: 1999
    • 4d Fabry DC, Rueping M. Acc. Chem. Res. 2016; 49: 1969
    • 4e Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 4f Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 4g Wiebe A, Gieshoff T, Mohle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 4h Dantas JA, Correia JT. M, Paixão MW, Corrêa AG. ChemPhotoChem 2019; 3: 506
    • 4i Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Trends Chem. 2019; 1: 510
    • 4j Jing Q, Moeller KD. Acc. Chem. Res. 2020; 53: 135
    • 4k Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
    • 4l Yu Y, Guo P, Zhong J.-S, Yuan Y, Ye K.-Y. Inorg. Chem. Front. 2020; 7: 131
    • 4m Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
    • 4n Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386

      For example:
    • 5a Ceballos BM, Yang JY. Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 12686
    • 5b Waldie KM, Brunner FM, Kubiak CP. ACS Sustainable Chem. Eng. 2018; 6: 6841
    • 5c Francke R, Schille B, Roemelt M. Chem. Rev. 2018; 118: 4631
    • 5d Mukherjee J, Siewert I. Eur. J. Inorg. Chem. 2020; 4319
  • 6 Roberts JA, Bullock RM. Inorg. Chem. 2013; 52: 3823
  • 7 Muckerman JT, Achord P, Creutz C, Polyansky DE, Fujita E. Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 15657
  • 8 Warren JJ, Tronic TA, Mayer JM. Chem. Rev. 2010; 110: 6961
  • 9 See the Supporting Information for this deviation.
  • 10 The nucleophilicity and electrophilicity parameters are summarized in the following database (accessed Aug 12, 2021):https://www.cup.lmu.de/oc/mayr/DBintro.html
    • 11a Cheng T.-Y, Brunschwig BS, Bullock RM. J. Am. Chem. Soc. 1998; 120: 13121
    • 11b Cheng T.-Y, Bullock RM. Organometallics 2002; 21: 2325
    • 11c Cheng T.-Y, Bullock RM. Organometallics 1995; 14: 4031
    • 11d Cheng T.-Y, Bullock RM. J. Am. Chem. Soc. 1999; 121: 3150
  • 12 Horn M, Schappele LH, Lang-Wittkowski G, Mayr H, Ofial AR. Chem. Eur. J. 2013; 19: 249
  • 13 Wiedner ES, Chambers MB, Pitman CL, Bullock RM, Miller AJ, Appel AM. Chem. Rev. 2016; 116: 8655
  • 14 Sarker N, Bruno JW. J. Am. Chem. Soc. 1999; 121: 2174
    • 15a Appel R, Mayr H. J. Am. Chem. Soc. 2011; 133: 8240
    • 15b Li Z, Jangra H, Chen Q, Mayer P, Ofial AR, Zipse H, Mayr H. J. Am. Chem. Soc. 2018; 140: 5500
  • 16 Mayr H, Kempf B, Ofial AR. Acc. Chem. Res. 2003; 36: 66
  • 17 Qiu G, Knowles RR. J. Am. Chem. Soc. 2019; 141: 2721
    • 18a Moyer BA, Thompson MS, Meyer TJ. J. Am. Chem. Soc. 1980; 102: 2310
    • 18b Thompson MS, Meyer TJ. J. Am. Chem. Soc. 1982; 104: 4106
    • 18c Thompson MS, De Giovani WF, Moyer BA, Meyer TJ. J. Org. Chem. 1984; 49: 4972
  • 19 Takeuchi KJ, Thompson MS, Pipes DW, Meyer TJ. Inorg. Chem. 1984; 23: 1845
  • 20 Binstead RA, Moyer BA, Samuels GJ, Meyer TJ. J. Am. Chem. Soc. 1981; 103: 2897
  • 21 Gallagher LA, Meyer TJ. J. Am. Chem. Soc. 2001; 123: 5308
  • 22 Roecker L, Meyer TJ. J. Am. Chem. Soc. 1987; 109: 746
  • 23 Stultz LK, Huynh MH. V, Binstead RA, Curry M, Meyer TJ. J. Am. Chem. Soc. 2000; 122: 5984
    • 24a Bryant JR, Mayer JM. J. Am. Chem. Soc. 2003; 125: 10351
    • 24b Bryant JR, Matsuo T, Mayer JM. Inorg. Chem. 2004; 43: 1587
    • 25a Gerli A, Reedijk J, Lakin MT, Spek AL. Inorg. Chem. 1995; 34: 1836
    • 25b Catalano VJ, Heck RA, Immoos CE, Ohman A, Hill MG. Inorg. Chem. 1998; 37: 2150
    • 25c Catalano VJ, Heck RA, Öhman A, Hill MG. Polyhedron 2000; 19: 1049
    • 25d Chanda N, Mondal B, Puranik VG, Lahiri GK. Polyhedron 2002; 21: 2033
    • 25e Sens C, Rodriguez M, Romero I, Llobet A, Parella T, Benet-Buchholz J. Inorg. Chem. 2003; 42: 8385
  • 26 Navarro M, De Giovani WF, Romero JR. J. Mol. Catal. A: Chem. 1998; 135: 249
  • 27 Rodriguez M, Romero I, Llobet A, Deronzier A, Biner M, Parella T, Stoeckli-Evans H. Inorg. Chem. 2001; 40: 4150
    • 28a Gagne RR, Marks DN. Inorg. Chem. 1984; 23: 65
    • 28b Che CM, Lai TF, Wong KY. Inorg. Chem. 1987; 26: 2289
    • 28c Wong KY, Che CM, Anson FC. Inorg. Chem. 1987; 26: 737
    • 28d Wong K.-Y, Yam VW.-W, Lee WW.-S. Electrochim. Acta 1992; 37: 2645
    • 28e Sala X, Poater A, Romero I, Rodríguez M, Llobet A, Solans X, Parella T, Santos TM. Eur. J. Inorg. Chem. 2004; 2004: 612
    • 29a McHatton RC, Anson FC. Inorg. Chem. 1984; 23: 3935
    • 29b Kutner W, Meyer TJ, Murray RW. J. Electroanal. Chem. Interfacial Electrochem. 1985; 195: 375
    • 29c Vining WJ, Meyer TJ. J. Electroanal. Chem. Interfacial Electrochem. 1987; 237: 191
  • 30 Marques AL. B, Li W, Marques EP, Zhang J. Electrochim. Acta 2004; 49: 879
  • 31 Stoessel SJ, Elliott CM, Stille JK. Chem. Mater. 1989; 1: 259
    • 32a Geneste F, Moinet C, Jezequel G. New J. Chem. 2002; 26: 1539
    • 32b Geneste F, Moinet C. New J. Chem. 2004; 28: 722
  • 33 Vannucci AK, Hull JF, Chen Z, Binstead RA, Concepcion JJ, Meyer TJ. J. Am. Chem. Soc. 2012; 134: 3972
    • 34a Guadalupe AR, Chen X, Sullivan BP, Meyer TJ. Inorg. Chem. 1993; 32: 5502
    • 34b Collomb-Dunand-Sauthier M.-N, Deronzier A, Bozec HL, Navarro M. J. Electroanal. Chem. Interfacial Electrochem. 1996; 410: 21
    • 34c Moss JA, Leasure RM, Meyer TJ. Inorg. Chem. 2000; 39: 1052
  • 35 Dobson JC, Meyer TJ. Inorg. Chem. 1988; 27: 3283
  • 36 Brownell KR, McCrory CC, Chidsey CE, Perry RH, Zare RN, Waymouth RM. J. Am. Chem. Soc. 2013; 135: 14299
  • 37 Tess ME, Hill PL, Torraca KE, Kerr ME, Abboud KA, McElwee-White L. Inorg. Chem. 2000; 39: 3942
    • 38a Yang Y, McElwee-White L. Dalton Trans. 2004; 2352
    • 38b Serra D, Correia MC, McElwee-White L. Organometallics 2011; 30: 5568
  • 39 Thorp HH, Van Houten J, Gray HB. Inorg. Chem. 1989; 28: 889
  • 40 Sugimoto H, Tsukube H, Tanaka K. Eur. J. Inorg. Chem. 2004; 2004: 4550
    • 41a Fleischmann M, Korinek K, Pletcher D. J. Electroanal. Chem. Interfacial Electrochem. 1971; 31: 39
    • 41b Fleischmann M, Korinek K, Pletcher D. J. Chem. Soc., Perkin Trans. 2 1972; 1396

      For example:
    • 42a Issahary DA, Ginzburg G, Polak M, Meyerstein D. J. Chem. Soc., Chem. Commun. 1982; 441
    • 42b Rosłonek G, Taraszewska J. J. Electroanal. Chem. 1992; 325: 285
    • 42c Ciszewski A. Electroanalysis 1995; 7: 1132
    • 42d Ciszewski A, Milczarek G. J. Electroanal. Chem. 1996; 413: 137
    • 42e Trevin S, Bedioui F, Villegas MG. G, Bied-Charreton C. J. Mater. Chem. 1997; 7: 923
    • 42f Ciszewski A, Milczarek G, Lewandowska B, Krutowski K. Electroanalysis 2003; 15: 518
    • 42g Golabi O, Filipe MS, Nozad CM. Electroanalysis 2004; 16: 199
    • 42h Golikand AN, Shahrokhian S, Asgari M, Ghannadi Maragheh M, Irannejad L, Khanchi A. J. Power Sources 2005; 144: 21
    • 42i Gonzalez-Fuentes MA, Manriquez J, Gutierrez-Granados S, Alatorre-Ordaz A, Godinez LA. Chem. Commun. 2005; 898
    • 42j Nozad Golikand A, Ghannadi Maragheh M, Irannejad L, Asgari M. Russ. J. Electrochem. 2006; 42: 167
    • 42k Cardoso WS, Dias VL. N, Costa WM, de Araujo Rodrigues I, Marques EP, Sousa AG, Boaventura J, Bezerra CW. B, Song C, Liu JH, Zhang J, Marques AL. B. J. Appl. Electrochem. 2008; 39: 55
    • 42l Revenga-Parra M, García T, Lorenzo E, Pariente F. Sens. Actuators, B 2008; 130: 730
    • 42m Zheng L, Song J.-F. J. Solid State Electrochem. 2009; 14: 43
    • 42n Ureta-Zañartu MS, González T, Fernández F, Báez D, Berríos C, Gutiérrez C. Int. J. Electrochem. Sci. 2012; 7: 8794
    • 42o Ourari A, Nora H, Noureddine C, Djouhra A. Electrochim. Acta 2015; 170: 311
  • 43 Wise CF, Mayer JM. J. Am. Chem. Soc. 2019; 141: 14971
  • 44 Das A, Nutting JE, Stahl SS. Chem. Sci. 2019; 10: 7542
  • 45 Miyazato Y, Wada T, Tanaka K. Bull. Chem. Soc. Jpn. 2006; 79: 745
    • 46a Hino T, Wada T, Fujihara T, Tanaka K. Chem. Lett. 2004; 33: 1596
    • 46b Ozawa H, Hino T, Ohtsu H, Wada T, Tanaka K. Inorg. Chim. Acta 2011; 366: 298
    • 47a Semmelhack MF, Schmid CR, Cortes DA. J. Am. Chem. Soc. 1984; 106: 3374
    • 47b Ryland BL, Stahl SS. Angew. Chem. Int. Ed. 2014; 53: 8824
  • 48 Badalyan A, Stahl SS. Nature 2016; 535: 406
  • 49 Tshepelevitsh S, Kütt A, Lõkov M, Kaljurand I, Saame J, Heering A, Plieger PG, Vianello R, Leito I. Eur. J. Org. Chem. 2019; 2019: 6735
  • 50 Yamazaki S, Yao M, Fujiwara N, Siroma Z, Yasuda K, Ioroi T. Chem. Commun. 2012; 48: 4353
  • 51 Liu L, Yu M, Wayland BB, Fu X. Chem. Commun. 2010; 46: 6353
  • 52 Elouarzaki K, Le Goff A, Holzinger M, Thery J, Cosnier S. J. Am. Chem. Soc. 2012; 134: 14078
  • 53 Waldie KM, Flajslik KR, McLoughlin E, Chidsey CE, Waymouth RM. J. Am. Chem. Soc. 2017; 139: 738
  • 54 Heins SP, Schneider PE, Speelman AL, Hammes-Schiffer S, Appel AM. ACS Catal. 2021; 11: 6384
  • 55 Annen SP, Bambagioni V, Bevilacqua M, Filippi J, Marchionni A, Oberhauser W, Schonberg H, Vizza F, Bianchini C, Grützmacher H. Angew. Chem. Int. Ed. 2010; 49: 7229
  • 56 Bellini M, Bevilacqua M, Filippi J, Lavacchi A, Marchionni A, Miller HA, Oberhauser W, Vizza F, Annen SP, Grützmacher H. ChemSusChem 2014; 7: 2432
  • 57 Bonitatibus PJ. Jr, Rainka MP, Peters AJ, Simone DL, Doherty MD. Chem. Commun. 2013; 49: 10581
  • 58 Königsmann M, Donati N, Stein D, Schonberg H, Harmer J, Sreekanth A, Grützmacher H. Angew. Chem. Int. Ed. 2007; 46: 3567
  • 59 Galvin CM, Waymouth RM. J. Am. Chem. Soc. 2020; 142: 19368
  • 60 Clarke ZE, Maragh PT, Dasgupta TP, Gusev DG, Lough AJ, Abdur-Rashid K. Organometallics 2006; 25: 4113
    • 61a Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL. Science 2011; 333: 863
    • 61b Shaw WJ, Helm ML, DuBois DL. Biochim. Biophys. Acta 2013; 1827: 1123
    • 61c DuBois DL. Inorg. Chem. 2014; 53: 3935
  • 62 Weiss CJ, Wiedner ES, Roberts JA, Appel AM. Chem. Commun. 2015; 51: 6172
  • 63 Weiss CJ, Das P, Miller DL, Helm ML, Appel AM. ACS Catal. 2014; 4: 2951
  • 64 Chakraborty S, Lagaditis PO, Förster M, Bielinski EA, Hazari N, Holthausen MC, Jones WD, Schneider S. ACS Catal. 2014; 4: 3994
  • 65 McLoughlin EA, Matson BD, Sarangi R, Waymouth RM. Inorg. Chem. 2020; 59: 1453
  • 66 Shinoda S, Moriyama H, Kise Y, Saito Y. J. Chem. Soc., Chem. Commun. 1978; 348
  • 67 Moriyama H, Aoki T, Shinoda S, Saito Y. J. Chem. Soc., Perkin Trans. 2 1982; 369
  • 68 Irie R, Li X, Saito Y. J. Mol. Catal. 1983; 18: 263
  • 69 Irie R, Li X, Saito Y. J. Mol. Catal. 1984; 23: 17
  • 70 Li X, Shinoda S, Saito Y. J. Mol. Catal. 1989; 49: 113
  • 71 Arakawa H, Sugi Y. Chem. Lett. 1981; 10: 1323
  • 72 Griggs CG, Smith DJ. H. J. Organomet. Chem. 1984; 273: 105
  • 73 Yamakawa T, Katsurao T, Shinoda S, Saito Y. J. Mol. Catal. 1987; 42: 183
  • 74 Nomura K, Saito Y, Shinoda S. J. Mol. Catal. 1989; 52: 99
  • 75 Yamakawa T, Miyake H, Moriyama H, Shinoda S, Saito Y. J. Chem. Soc., Chem. Commun. 1986; 326
  • 76 Matsubara T, Saito Y, Yamakawa T, Shinoda S. J. Mol. Catal. 1991; 67: 175
  • 77 Roundhill DM. J. Am. Chem. Soc. 1985; 107: 4354
  • 78 Roundhill DM, Atherton SJ, Shen ZP. J. Am. Chem. Soc. 1987; 109: 6076
  • 79 Harvey EL, Stiegman AE, Vlcek A, Gray HB. J. Am. Chem. Soc. 1987; 109: 5233
  • 80 Che CM, Lee WM, Cho KC, Harvey PD, Gray HB. J. Phys. Chem. 1989; 93: 3095
  • 81 Kasap H, Caputo CA, Martindale BC, Godin R, Lau VW, Lotsch BV, Durrant JR, Reisner E. J. Am. Chem. Soc. 2016; 138: 9183
  • 82 Li F, Wang Y, Du J, Zhu Y, Xu C, Sun L. Appl. Catal. B 2018; 225: 258
  • 83 West JG, Huang D, Sorensen EJ. Nat. Commun. 2015; 6: 10093
  • 84 Yang X.-J, Zheng Y.-W, Zheng L.-Q, Wu L.-Z, Tung C.-H, Chen B. Green Chem. 2019; 21: 1401
  • 85 Fuse H, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 4493
  • 86 Ren S, Cheng D, Li X, Xu X. Tetrahedron Lett. 2021; 76: 153234
  • 87 Ho HA, Manna K, Sadow AD. Angew. Chem. Int. Ed. 2012; 51: 8607
    • 88a De Oliveira IM. F, Moutet J.-C, Vlachopoulos N. J. Electroanal. Chem. Interfacial Electrochem. 1990; 291: 243
    • 88b De Oliveira IM. F, Moutet J.-C. J. Mol. Catal. 1993; 81: L19
  • 89 Chardon-Noblat S. J. Mol. Catal. A: Chem. 1995; 99: 13
    • 90a Moutet J.-C, Duboc-Toia C, Ménage S, Tingry S. Adv. Mater. 1998; 10: 665
    • 90b Moutet J.-C, Yao Cho L, Duboc-Toia C, Ménage SP, Riesgo EC, Thummel RP. New J. Chem. 1999; 23: 939
  • 91 Chen Z, Glasson CR, Holland PL, Meyer TJ. Phys. Chem. Chem. Phys. 2013; 15: 9503
  • 92 Fokin I, Siewert I. Chem. Eur. J. 2020; 26: 14137
  • 93 Fokin I, Denisiuk A, Würtele C, Siewert I. Inorg. Chem. 2019; 58: 10444
    • 94a pK a of phenol: see ref 49
    • 94b Calculated pK a of similar Mn-hydride species: Riplinger C, Sampson MD, Ritzmann AM, Kubiak CP, Carter EA. J. Am. Chem. Soc. 2014; 136: 16285
  • 95 Armstrong KC, Waymouth RM. Organometallics 2020; 39: 4415
  • 96 Wu W, Seki T, Walker KL, Waymouth RM. Organometallics 2018; 37: 1428
  • 97 Li J, Yang J, Wen F, Li C. Chem. Commun. 2011; 47: 7080
  • 98 Liu X, Sun D, Yuan R, Fu X, Li Z. J. Catal. 2013; 304: 1
  • 99 Ghosh T, Slanina T, König B. Chem. Sci. 2015; 6: 2027
  • 100 Call A, Casadevall C, Acuna-Pares F, Casitas A, Lloret-Fillol J. Chem. Sci. 2017; 8: 4739
  • 101 Call A, Lloret-Fillol J. Chem. Commun. 2018; 54: 9643
  • 102 Kaphan DM, Brereton KR, Klet RC, Witzke RJ, Miller AJ. M, Mulfort KL, Delferro M, Tiede DM. Organometallics 2021; 40: 1482
  • 103 Chambers MB, Kurtz DA, Pitman CL, Brennaman MK, Miller AJ. J. Am. Chem. Soc. 2016; 138: 13509
  • 104 Guo X, Wenger OS. Angew. Chem. Int. Ed. 2018; 57: 2469
  • 105 Rong J, Seeberger PH, Gilmore K. Org. Lett. 2018; 20: 4081
  • 106 van As DJ, Connell TU, Brzozowski M, Scully AD, Polyzos A. Org. Lett. 2018; 20: 905
  • 107 Wang R, Ma M, Gong X, Panetti GB, Fan X, Walsh PJ. Org. Lett. 2018; 20: 2433
  • 108 Guo X, Okamoto Y, Schreier MR, Ward TR, Wenger OS. Chem. Sci. 2018; 9: 5052