Synthesis 2022; 54(03): 600-616
DOI: 10.1055/a-1644-2806
feature

Synthesis of Pentacoordinated Spiro[4.4]phosphoranes by Reaction of Cyclic Phosphazenyl Anions with Epoxides: Study of their P-Remote Functionalization and Hydrolysis

Pablo M. Sansores Peraza
,
,
,
,
Financial support through Universidad de Almería (project PPUENTE2020/007) is gratefully acknowledged. P.M.S.P. thanks Fundación Alban for a doctoral fellowship.


Abstract

The synthesis of a new family of pentacoordinated spiro[4.4]phosphoranes stabilized by the ortho-benzamide bidentate ligand (oBA, -C6H4-2-C(O)NH-) through reaction of Cα,C ortho -dilithiated phosphazenes with oxiranes is reported. Mixtures of epimers that differ in configuration at the phosphorus atom were obtained with moderate to high yields and diastereoselectivities. C3-Disubstituted derivatives could be separated, which provided access to enantiopure products arising from the reaction with (R)-2-phenyloxirane. Stereomutation was observed by heating the spirophosphoranes at 100 °C. Directed ortho-lithiation of spirophoshoranes followed by electrophilic quench reactions including carbon-based and heteroatom-based electrophiles afforded derivatives functionalized in a remote position with respect to the phosphorus atom. Benzoic acid catalyzed hydrolysis of spirophosphoranes furnished ortho-(γ-hydroxyalkylphosphoryl)benzamides by cleavage of the P–O and P–N bonds with retention of the phosphorus configuration. In contrast, alkaline hydrolysis led to the formation of γ-hydroxyphosphinic acids and benzamide.

Supporting Information



Publication History

Received: 23 July 2021

Accepted after revision: 14 September 2021

Accepted Manuscript online:
14 September 2021

Article published online:
27 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Krasowska D, Chrzanowski J, Kiełbasiński P, Drabowicz J. Molecules 2016; 21: 1573
    • 1b Yoshifuji M. Pentacoordinated Phosphorus Compounds in Organophosphorus Chemistry: From Molecules to Applications, 1st ed. Iaroshenko V. Wiley-VCH; Weinheim: 2019. Chap. 5, 219
    • 3a Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G. Chem. Rev. 2006; 106: 3338
    • 3b Pereira ES, Da Silva JC. S, Brandao TA. S, Rocha WR. Phys. Chem. Chem. Phys. 2016; 18: 18255
    • 3c Jiang L, Sun Y, Chen Y, Nan P. ChemistrySelect 2020; 5: 9492
    • 4a Baccolini G. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 2173
    • 4b Roy S, Vega MV, Harmer NJ. Catalysts 2019; 9: 29
  • 5 Wittig G, Rieber M. Justus Liebigs Ann. Chem. 1949; 562: 187
  • 6 Wittig G, Geissler G. Justus Liebigs Ann. Chem. 1953; 580: 44
  • 7 Byrne PA, Gilheany DG. Chem. Soc. Rev. 2013; 42: 6670
    • 8a Kano N, Hua XJ, Kawa S, Kawashima T. Tetrahedron Lett. 2000; 41: 5237
    • 8b Gu Y, Tian S.-K. Top. Curr. Chem. 2012; 327: 197
    • 8c Jarwal N, Thankachan PP. Comput. Theor. Chem. 2017; 1114: 65
    • 9a Kolodiazhnyi OI. Pure Appl. Chem. 2019; 91: 43
    • 9b Kolodiazhnyi OI. Russ. Chem. Rev. 2020; 89: 537
    • 10a Kumara Swamy KC, Bhuvan Kumar NN, Balaraman E, Pavan Kumar KV. P. Chem. Rev. 2009; 109: 2551
    • 10b Michelini MC, Russo N, Alcaro S, Wozniak LA. Tetrahedron 2012; 68: 5554
    • 10c Camp D, von Itzstein M, Jenkins ID. Tetrahedron 2015; 71: 4946
    • 10d Fianchini M, Maseras F. Tetrahedron 2019; 75: 1852
    • 10e Han K, Wang Y, Zhao P, You X, Wang J, Guo Y, Zhao Y, Cao S. J. Org. Chem. 2021; 86: 4512
    • 11a Skarzyńska A. Coord. Chem. Rev. 2013; 257: 1039
    • 11b Wojcik P, Sygellou L, Gniewek A, Skarzynska A, Trzeciak A. ChemCatChem 2017; 9: 4397
    • 11c Skarzyńska A, Siczek M, Gawryszewska P, Chaczko K. Appl. Organomet. Chem. 2020; 34: e5756
  • 12 Krasowska D, Pokora-Sobczak P, Jasiak A, Drabowicz J. Adv. Heterocycl. Chem. 2018; 124: 175
    • 14a Vedejs E, Marth CF. Tetrahedron Lett. 1987; 28: 3445
    • 14b Vedejs E, Fleck TJ. J. Am. Chem. Soc. 1989; 111: 5861
    • 15a Granoth I, Martin JC. J. Am. Chem. Soc. 1979; 101: 4618
    • 15b Perozzi EF, Michalak RS, Figuly GD, Stevenson III WH, Dess DB, Ross MR, Martin JC. J. Org. Chem. 1981; 46: 1049
    • 16a Jiang X.-D, Kakuda K.-i, Matsukawa S, Yamamichi H, Kojima S, Yamamoto Y. Chem. Asian J. 2007; 2: 314
    • 16b Jiang X.-D, Matsukawa S, Kakuda K.-i, Fukuzaki Y, Zhao W.-L, Li L.-S, Shen H.-B, Kojima S, Yamamoto Y. Dalton Trans. 2010; 39: 9823

      Reviews:
    • 17a Kobayashi J, Kawashima T. C. R. Chim. 2010; 13: 1249
    • 17b Akiba K.-y. Heteroat. Chem. 2011; 22: 207
    • 18a Matsukawa S, Kojima S, Kajiyama K, Yamamoto Y, Akiba K.-y, Re S, Nagase S. J. Am. Chem. Soc. 2002; 124: 13154
    • 18b Miyake H, Kano N, Kawashima T. Inorg. Chem. 2011; 50: 9083
    • 18c Zhan C, Han Z, Patrick BO, Gates DP. Dalton Trans. 2018; 47: 12118
    • 19a Kano N, O’Brien NJ, Uematsu R, Ramozzi R, Morokuma K. Angew. Chem. Int. Ed. 2017; 56: 5882
    • 19b O’Brien NJ, Kano N, Havare N, Uematsu R, Ramozzi R, Morokuma K. Eur. J. Inorg. Chem. 2020; 1995
    • 19c Ma W, Dai W, Liu Q, Chen Y, Zhao Y, Cao S. Tetrahedron 2020; 76: 130886
    • 20a Kojima S, Kawaguchi K, Akiba K.-y. Tetrahedron Lett. 1997; 38: 7753
    • 20b Kojima S, Kawaguchi K, Matsukawa S, Akiba K.-y. Tetrahedron 2003; 59: 255
    • 21a Jiang X.-D, Toya Y, Matsukawa S, Kojima S, Jimenez-Halla JO. C, Shang R, Nakamoto M, Yamamoto Y. Chem. Sci. 2019; 10: 3466
    • 21b Moersdorf J.-M, Wadepohl H, Ballmann J. Inorg. Chem. 2019; 58: 3502
  • 22 Sun C, Cao S, Zhao P, Ma W, Guo Y, Zhao Y. Tetrahedron Lett. 2018; 59: 3833
    • 23a Gonçalves H, Majoral JP. Phosphorus Sulfur Relat. Elem. 1978; 4: 343
    • 23b Leroux Y, El Manouni D, Labaudiniere L, Burgada R, Safsaf A, Neuman A, Gillier H. Phosphorus, Sulfur Silicon Relat. Elem. 1990; 47: 443
    • 23c McGall GH, McClelland RA. Can. J. Chem. 1991; 69: 2064
    • 23d Vercruysse K, Dejugnat C, Munoz A, Etemad-Moghadam G. Eur. J. Org. Chem. 2000; 281
    • 23e Vercruysse-Moreira K, Dejugnat C, Etemad-Moghadam G. Tetrahedron 2002; 58: 5651
    • 23f Déjugnat C, Etemad-Moghadam G, Rico-Lattes I. Chem. Commun. 2003; 1858
    • 23g Han L.-B, Ono Y, Xu Q, Shimada S. Bull. Chem. Soc. Jpn. 2010; 83: 1086
    • 23h Dimukhametov MN, Mironov VF, Musin RZ, Burnaeva LM, Belova NA. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 936
  • 24 Peralta-Pérez E, López-Ortiz F. Chem. Commun. 2000; 2029
    • 25a García-López J, Peralta-Pérez E, Forcén-Acebal A, García-Granda S, López-Ortiz F. Chem. Commun. 2003; 856
    • 25b García-López J, Fernández I, Serrano-Ruiz M, López-Ortiz F. Chem. Commun. 2007; 4674
    • 26a García-López J, Moran-Ramallal A, González J, Roces L, García-Granda S, Iglesias MJ, Oña-Burgos P, López-Ortiz F. J. Am. Chem. Soc. 2012; 134: 19504
    • 26b García-López J, Sansores-Peraza PM, Iglesias MJ, Roces L, García-Granda S, López-Ortiz F. J. Org. Chem. 2020; 85: 14570
  • 27 Schmidbaur H, Holl P. Chem. Ber. 1979; 112: 501
  • 28 Schmidpeter A, Von Criegern T. Chem. Ber. 1979; 112: 2762
  • 29 Schmidbaur H, Holl P. Z. Naturforsch., B 1978; 33: 572
  • 30 Cadogan JI. G, Gosney I, Henry E, Naisby T, Nay B, Stewart NJ, Tweddle NJ. J. Chem. Soc., Chem. Commun. 1979; 189
  • 31 Cadogan JI. G, Stewart NJ, Tweddle NJ. J. Chem. Soc., Chem. Commun. 1979; 191
  • 32 Álvarez Gutiérrez JM, Peralta-Pérez E, Pérez-Álvarez I, López-Ortiz F. Tetrahedron 2001; 57: 3075
  • 33 Staudinger H, Meyer J. Helv. Chim. Acta 1919; 2: 635
    • 34a Issleib K, Thomas G. Chem. Ber. 1960; 93: 803
    • 34b Motoyoshiya J, Ikeda T, Tsuboi S, Kusaura T, Takeuchi Y, Hayashi S, Yoshioka S, Takaguchi Y, Aoyama H. J. Org. Chem. 2003; 68: 5950
    • 34c Battula S, Battini N, Singh D, Ahmed QN. Org. Biomol. Chem. 2015; 13: 8637
    • 35a Muller E, Topel T. Ber. Dtsch. Chem. Ges. B 1939; 72: 273
    • 35b Möller M, Husemann M, Boche G. J. Organomet. Chem. 2001; 624: 47
  • 36 Chemla F, Vrancken E. The Chemistry of Organolithium Compounds Part 2. In Patai Series: The Chemistry of Functional Groups. Rappoport Z, Marek I. Wiley; Chichester: 2004: 1165-1242
  • 37 Quin LD, Williams AJ. Practical Interpretation of P-31 NMR Spectra and Computer Assisted Structure Verification. Advanced Chemistry Development; Toronto: 2004
  • 38 Kojima S, Nakamoto M, Akiba K.-Y. Eur. J. Org. Chem. 2008; 1715
  • 39 Kumara KC, Satish N. Acc. Chem. Res. 2006; 39: 324
    • 40a Jiang X.-D, Matsukawa S, Yamamichi H, Kakuda K.-i, Kojima S, Yamamoto Y. Eur. J. Org. Chem. 2008; 1392
    • 40b Couzijn EP. A, Slootweg JC, Ehlers AW, Lammertsma K. J. Am. Chem. Soc. 2010; 132: 18127
    • 41a Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA. J. Comput. Chem. 2001; 22: 976
    • 41b Zhao Y, Truhlar DG. J. Chem. Phys. 2006; 125: 194101
  • 42 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
  • 43 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B.01 . Gaussian, Inc; Wallingford (CT): 2010
    • 44a González C, Schlegel HB. J. Chem. Phys. 1989; 90: 2154
    • 44b González C, Schlegel HB. J. Chem. Phys. 1990; 94: 5523
    • 45a Florio S, Salomone A. Synthesis 2016; 48: 1993
    • 45b Miah MA. J, Sibi MP, Chattopadhyay S, Familoni OB, Snieckus V. Eur. J. Org. Chem. 2018; 447
    • 45c Quesnelle CA, Snieckus V. Synthesis 2018; 50: 4413
    • 45d Ghinato S, Dilauro G, Perna FM, Capriati V, Blangetti M, Prandi C. Chem. Commun. 2019; 55: 7741
    • 45e Kancherla S, Jørgensen KB. J. Org. Chem. 2020; 85: 11140
    • 46a Schaub B, Schlosser M. Tetrahedron Lett. 1985; 26: 1623
    • 46b Korth K, Sundermeyer J. Tetrahedron Lett. 2000; 41: 5461
  • 47 Adachi T, Matsukawa S, Nakamoto M, Kajiyama K, Kojima S, Yamamoto Y, Akiba K.-y, Re S, Nagase S. Inorg. Chem. 2006; 45: 7269
  • 48 Liam JY. C, Beer PD. Chem 2018; 4: 731
    • 49a Munoz A, Garrigues B, Koenig M. Tetrahedron 1980; 36: 2467
    • 49b McGall GH, McClelland RA. J. Am. Chem. Soc. 1985; 107: 5198
  • 50 Gorobetsa NYu, Yermolayeva SA, Gurleya T, Gurinov AA, Tolstoy PM, Shenderovich IG, Leadbeater NE. J. Phys. Org. Chem. 2012; 25: 287
  • 51 Byrne PA, Gilheany DG. Chem. Eur. J. 2016; 22: 9140
  • 52 Koizumi T, Haake P. J. Am. Chem. Soc. 1973; 95: 8073
  • 53 APEX3 v2014.5-0 . Bruker AXS Inc; Madison (Wisconsin, USA): 2014
  • 54 SAINT V8.38A . Bruker AXS Inc; Madison (Wisconsin, USA): 2017
  • 55 SADABS . Bruker AXS Inc; Madison (Wisconsin, USA): 2016
  • 56 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
  • 57 Farrugia LJ. J. Appl. Crystallogr. 2012; 45: 849
  • 58 Legault CY. CYLview, 1.0b. . Université de Sherbrooke; Québec: 2009. http://www.cylview.org (accessed Oct 14, 2021)