Synthesis 2021; 53(21): 3977-3990
DOI: 10.1055/a-1577-6085
short review

Synthesis of α-exo-Methylene-γ-butyrolactones: Recent Developments and Applications in Natural Product Synthesis

Weilong Liu
,
We thank the Swiss National Science Foundation (SNSF) for funding our efforts in the area of sesquiterpene lactone synthesis (Grant Nos. 169141, 188406) and the National Centres of Competence in Research (NCCR) Chemical Biology (Grant No. 185898).


Abstract

The α-exo-methylene-γ-butyrolactone moiety is present in a vast array of structurally diverse natural products and is often central to their biological activity. In this short review, we summarize new approaches to α-exo-methylene-γ-butyrolactones developed over the past decade as well as their applications in total synthesis.

1 Introduction

2 Approaches to α-exo-Methylene-γ-butyrolactones

2.1 Enantioselective Synthesis via Lactonization Approaches

2.2 Enantioselective Halolactonizations

2.3 Enantioselective Barbier-Type Allylation

2.4 C–H Insertion/Olefination Sequences

2.5 Alkene Cyclization

2.6 Strain-Driven Dyotropic Rearrangement

3 β-(Hydroxymethylalkyl)-α-exo-methylene-γ-butyrolactones

4 Applications in Total Synthesis

4.1 Sesquiterpene Lactones

4.2 Lignans

4.3 Other Monocyclic Natural Products

4.4 Choice of Methodology in Recent Total Syntheses

5 Summary and Outlook



Publication History

Received: 07 July 2021

Accepted after revision: 03 August 2021

Accepted Manuscript online:
03 August 2021

Article published online:
01 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dictionary of Natural Products . CRC Press, Taylor & Francis Group; 2021. (accessed Sep 16, 2021) http://dnp.chemnetbase.com
    • 2a Jackson PA, Widen JC, Harki DA, Brummond KM. J. Med. Chem. 2017; 60: 839
    • 2b Mayer RJ, Allihn PW, Hampel N, Mayer P, Sieber SA, Ofial AR. Chem. Sci. 2021; 12: 4850
    • 3a Tian C, Sun R, Liu K, Fu L, Liu X, Zhou W, Yang Y, Yang J. Cell Chem. Biol. 2017; 24: 1416
    • 3b Lagoutte R, Winssinger N. Chimia 2017; 71: 703
  • 4 Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM. Chem. Biol. 2001; 8: 759
  • 5 Lyß G, Knorre A, Schmidt TJ, Pahl HL, Merfort I. J. Biol. Chem. 1998; 273: 33508
  • 6 Dong T, Li C, Wang X, Dian L, Zhang X, Li L, Chen S, Cao R, Li L, Huang N, He S, Lei X. Nat. Commun. 2015; 6: 6522
  • 7 Lagoutte R, Serba C, Abegg D, Hoch DG, Adibekian A, Winssinger N. Nat. Commun. 2016; 7: 12470
  • 8 Liu M, Xiao C, Sun M, Tan M, Hu L, Yu Q. J. Cell. Mol. Med. 2019; 23: 4301
  • 9 Liu W, Patouret R, Barluenga S, Plank M, Loewith R, Winssinger N. ACS Cent. Sci. 2021; 7: 954
    • 10a Hoffmann H, Rabe J. Angew. Chem. Int. Ed. 1985; 24: 94
    • 10b Kitson RR, Millemaggi A, Taylor RJ. Angew. Chem. Int. Ed. 2009; 48: 9426
    • 10c Elford TG, Hall DG. Synthesis 2010; 893
  • 13 De Kraker J.-W, Franssen MC, Joerink M, De Groot A, Bouwmeester HJ. Plant Physiol. 2002; 129: 257
  • 14 Companyó X, Mazzanti A, Moyano A, Janecka A, Rios R. Chem. Commun. 2013; 49: 1184
  • 15 Li Y, Ibsen L, Jørgensen KA. Org. Lett. 2017; 19: 1200
  • 16 Zhang H, Yao Q, Cao W, Ge S, Xu J, Liu X, Feng X. Chem. Commun. 2018; 54: 12511
  • 17 Nolsøe JM, Hansen TV. Eur. J. Org. Chem. 2014; 3051
    • 18a Gan M, Wang W, Wang H, Wang Y, Jiang X. Org. Lett. 2019; 21: 8275
    • 18b Wang W, He H, Gan M, Wang H, Wang Y, Jiang X. Adv. Synth. Cat. 2019; 361: 4797
  • 19 Öhler E, Reininger K, Schmidt U. Angew. Chem. Int. Ed. 1970; 9: 457
  • 20 Zimmerman HE, Traxler MD. J. Am. Chem. Soc. 1957; 79: 1920
  • 21 Suzuki T, Atsumi J.-i, Sengoku T, Takahashi M, Yoda H. J. Organomet. Chem. 2010; 695: 128
    • 22a Murata Y, Takahashi M, Yagishita F, Sakamoto M, Sengoku T, Yoda H. Org. Lett. 2013; 15: 6182
    • 22b Takahashi M, Murata Y, Yagishita F, Sakamoto M, Sengoku T, Yoda H. Chem. Eur. J. 2014; 20: 11091
  • 23 Takahashi M, Murata Y, Ishida M, Yagishita F, Sakamoto M, Sengoku T, Yoda H. Org. Biomol. Chem. 2014; 12: 7686
  • 24 Montgomery TP, Hassan A, Park BY, Krische MJ. J. Am. Chem. Soc. 2012; 134: 11100
  • 25 McInturff EL, Mowat J, Waldeck AR, Krische MJ. J. Am. Chem. Soc. 2013; 135: 17230
  • 26 Wang Q.-L, Peng L, Wang F.-Y, Zhang M.-L, Jia L.-N, Tian F, Xu X.-Y, Wang L.-X. Chem. Commun. 2013; 49: 9422
  • 27 Chen W, Yang Q, Zhou T, Tian Q, Zhang G. Org. Lett. 2015; 17: 5236
    • 28a Lloyd MG, Taylor RJ, Unsworth WP. Org. Lett. 2014; 16: 2772
    • 28b Lloyd MG, D’Acunto M, Taylor RJ, Unsworth WP. Tetrahedron 2015; 71: 7107
  • 29 Shie J.-Y, Zhu J.-L. Tetrahedron 2016; 72: 1590
    • 30a Takizawa S, Nguyen TM. N, Grossmann A, Enders D, Sasai H. Angew. Chem. Int. Ed. 2012; 51: 5423
    • 30b Takizawa S, Nguyen TM.-N, Grossmann A, Suzuki M, Enders D, Sasai H. Tetrahedron 2013; 69: 1202
  • 31 Su X, Zhou W, Li Y, Zhang J. Angew. Chem. Int. Ed. 2015; 54: 6874
  • 32 Yonehara K, Miyoshi Y, Tsukajima A, Akatsuka T, Saito M. Adv. Synth. Cat. 2011; 353: 1071
    • 33a Beeson TD, Mastracchio A, Hong JB, Ashton K, MacMillan DW. C. Science 2007; 316: 582
    • 33b Conrad JC, Kong J, Laforteza BN, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 11640
  • 34 Tang Y, Guo Z, Bao R, Li Y, Li Y, Zhang J, Tang Y. Angew. Chem. Int. Ed. 2021; 60: 14545
  • 35 Zeller MA, Riener M, Nicewicz DA. Org. Lett. 2014; 16: 4810
  • 36 Hodgson DM, Talbot EP, Clark BP. Org. Lett. 2011; 13: 5751
    • 38a Fernandez I, Cossio FP, Sierra MA. Chem. Rev. 2009; 109: 6687
    • 38b Hugelshofer CL, Magauer T. Nat. Prod. Rep. 2017; 34: 228
  • 39 Lei X, Li Y, Lai Y, Hu S, Qi C, Wang G, Tang Y. Angew. Chem. Int. Ed. 2021; 60: 4221
  • 40 Ren W, Bian Y, Zhang Z, Shang H, Zhang P, Chen Y, Yang Z, Luo T, Tang Y. Angew. Chem. Int. Ed. 2012; 51: 6984
  • 41 Hodgson DM, Talbot EP, Clark BP. Org. Lett. 2011; 13: 2594
  • 42 Gao Y.-Z, Wang X, Sun L.-D, Xie L.-G, Xu X.-H. Org. Biomol. Chem. 2012; 10: 3991
    • 43a Fuchs M, Schober M, Orthaber A, Faber K. Adv. Synth. Catal. 2013; 355: 2499
    • 43b Hartmann P, Lazzarotto M, Steiner L, Cigan E, Poschenrieder S, Sagmeister P, Fuchs M. J. Org. Chem. 2019; 84: 5831
    • 43c Hartmann PE, Lazzarotto M, Pletz J, Tanda S, Neu P, Goessler W, Kroutil W, Boese AD, Fuchs M. J. Org. Chem. 2020; 85: 9672
  • 44 Zhang F, Liu Y, Xie L, Xu X. RSC Adv. 2014; 4: 17218
  • 45 Lagoutte R, Serba C, Winssinger N. J. Antibiot. 2018; 71: 248
  • 46 Lagoutte R, Pastor M, Berthet M, Winssinger N. Tetrahedron 2018; 74: 6012
  • 47 Zhang FH, Yang YX, Xie LG, Xu XH. Chem. Commun. 2013; 49: 4697
  • 48 Liu W, Yu Z, Winssinger N. Org. Lett. 2021; 23: 969
  • 49 Albrecht Ł, Albrecht A, Janecki T. α-Alkylidene-γ- and δ-Lactones and Lactams. Natural Lactones and Lactams: Synthesis Occurrence and Biological Activity. Janecki T. Wiley-VCH; Weinheim: 2013. 147
  • 50 Berrue F, Kerr RG. Nat. Prod. Rep. 2009; 26: 681
  • 51 Martinez SA, Gillard M, Chany A.-C, Burton JW. Tetrahedron 2018; 74: 5012
  • 52 Fernandes RA, Chaudhari DA, Jha AK. Asian J. Org. Chem. 2020; 9: 1478
  • 53 Peng Y. Lignans Lignins and Resveratrols. In From Biosynthesis to Total Synthesis: Strategies and Tactics for Natural Products. Zografos AL. John Wiley & Sons; Hoboken: 2016: 331-379
  • 54 Barbetti P, Casinovi CG, Santurbano B, Longo R. Collect. Czech. Chem. Commun. 1979; 44: 3123
  • 55 Yang H, Gao Y, Qiao X, Xie L, Xu X. Org. Lett. 2011; 13: 3670
  • 56 Nakamura T, Pitna DB, Kimura K, Yoshimoto Y, Uchiyama T, Mori T, Kondo R, Hara S, Egoshi Y, Yamaguchi S, Suzuki N, Suzuki Y, Usuki T. Org. Biomol. Chem. 2021; 19: 6038
    • 57a Fournier J, Lozano O, Menozzi C, Arseniyadis S, Cossy J. Angew. Chem. Int. Ed. 2013; 52: 1257
    • 57b Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
  • 58 List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
  • 59 Kulkarni G, Kelkar G, Bhattacharyya S. Tetrahedron 1964; 20: 2639
  • 60 Lloyd MG, D’Acunto M, Taylor RJ, Unsworth WP. Org. Biomol. Chem. 2016; 14: 1641
    • 61a Bohlmann F, Zdero C, Grenz M. Tetrahedron Lett. 1969; 2417
    • 61b Theodori R, Karioti A, Rančić A, Skaltsa H. J. Nat. Prod. 2006; 69: 662
  • 62 Hodgson DM, Talbot EP, Clark BP. Chem. Commun. 2012; 48: 6349
  • 63 Lazzarotto M, Hammerer L, Hetmann M, Borg A, Schmermund L, Steiner L, Hartmann P, Belaj F, Kroutil W, Gruber K. Angew. Chem. Int. Ed. 2019; 58: 8226
  • 64 Lloyd MG, Taylor RJ, Unsworth WP. Org. Biomol. Chem. 2016; 14: 8971
  • 65 Sasaki T, Igarashi Y, Saito N, Furumai T. J. Antibiot. 2001; 54: 567
  • 66 Yang H, Qiao X, Cui Q, Xu X. Chin. Chem. Lett. 2009; 20: 1023

    • For reviews on sesquiterpene lactone synthesis, see:
    • 67a Fraga BM. Nat. Prod. Rep. 2013; 30: 1226
    • 67b Santana A, González Molinillo JM, Macías Domínguez FA. Eur. J. Org. Chem. 2015; 2093
    • 67c Dey S, Bajaj SO. Synth. Commun. 2018; 48: 1
    • 67d Barbero M, Prandi C. Nat. Prod. Commun. 2018; 13: 241
  • 68 Hu X, Xu S, Maimone TJ. Angew. Chem. Int. Ed. 2017; 56: 1624
  • 69 Johnson TC, Chin MR, Siegel D. J. Org. Chem. 2017; 82: 4640
  • 70 Hajra S, Acharyya S, Mandal A, Maity R. Org. Biomol. Chem. 2017; 15: 6401
  • 71 Hu X, Musacchio AJ, Shen X, Tao Y, Maimone TJ. J. Am. Chem. Soc. 2019; 141: 14904
  • 72 Kaden F, Metz P. Org. Lett. 2021; 23: 1344
  • 73 Reddy DS, Corey EJ. J. Am. Chem. Soc. 2018; 140: 16909
  • 74 Freund RR, Gobrecht P, Rao Z, Gerstmeier J, Schlosser R, Görls H, Werz O, Fischer D, Arndt H.-D. Chem. Sci. 2019; 10: 7358
  • 75 Feng J, Lei X, Bao R, Li Y, Xiao C, Hu L, Tang Y. Angew. Chem. Int. Ed. 2017; 56: 16323
  • 76 Lee S, Kim B.-G, Geum S, Kim J, Lee H.-Y. Org. Lett. 2021; 23: 4651
  • 77 Demertzidou VP, Kourgiantaki M, Zografos A. Org. Biomol. Chem. 2021; DOI: DOI: 10.1039/d1ob01716k.