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Introduction

In late 2019, an enveloped single-strand RNA virus, the severe
acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2),
attracted worldwide attention because of its contagiousness,
lethality, and in 2020 spread worldwide. Soon after the
outbreak, the coronavirus disease 2019 (COVID-19) was
reported to develop frequent thrombotic complications,1

and thereafter, the pathophysiology of the thrombotic pheno-

type was reported.2 From lessons learned, understanding
known viral pathogenicity is critical to prepare for the future
and upcoming new viral infections that may emerge.

Similar enveloped single-stranded RNA viruses from four
different families (Arenavirus, Bunyavirus, Filovirus, and
Flavivirus) have also been known to induce viral hemorrhag-
ic fever known as Ebola fever, Marburg fever, Lassa fever,
South American hemorrhagic fever, yellow fever, Crimean-
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Abstract Several viral infectious diseases have emerged or re-emerged from wildlife vectors that
have generated serious threats to global health. Increased international travel and
commerce increase the risk of transmission of viral or other infectious diseases. In
addition, recent climate changes accelerate the potential spread of domestic disease.
The coronavirus disease 2019 (COVID-19) pandemic is an important example of the
worldwide spread, and the current epidemic will unlikely be the last. Viral hemorrhagic
fevers, such as dengue and Lassa fevers, may also have the potential to spread
worldwide with a significant impact on public health with unpredictable timing. Based
on the important lessons learned from COVID-19, it would be prudent to prepare for
future pandemics of life-threatening viral diseases. The key concept that connect
COVID-19 and viral hemorrhagic fever is the coagulation disorder. This review focuses
on the coagulopathy of acute viral infections since hypercoagulability has been a major
challenge in COVID-19, but represents a different presentation compared with viral
hemorrhagic fever. However, both thrombosis and hemorrhage are understood as the
result of thromboinflammation due to viral infections, and the role of anticoagulation is
important to consider.
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Congo hemorrhagic fever, Rift Valley fever, and others
(►Table 1).3Dengue fever virus (family of Flavivirus) induces
hemorrhagic manifestations caused by thrombocytopenia,
coagulation abnormalities, and shock due to plasma volume
loss. The resulting endothelial injury increases capillary
permeability, coagulation is activated, and a consumptive
coagulopathy follows the two main features of these deadly
viral diseases.4 Although the type of coagulopathy varies,
thrombotic in COVID-19 and hemorrhagic in viral hemor-
rhagic fever, since the thrombotic phase always precedes
hemorrhagic phase, they can be considered as sequential
changes, and with different timing of the acute infectious
events. As a result, understanding the common pathophysi-
ology will be important to manage these formidable
diseases.

For many years, viral hemorrhagic fevers have been
confined to the endemic areas since most viruses require
vectors such as arthropods and rodents for transmission to
humans. However, the recent globalization and rapid climate
change have released these diseases from their original
geographic origins and vectors worldwide.5 For preventing
unexpected attacks from these new and unfamiliar viruses, a
basic knowledge of these transmitting diseases is needed. As
a result, we review information known about viral hemor-
rhagic fever and compare it to COVID-19-associated coagul-
opathy (CAC) to focus on the hemostatic dysfunction.

Transmission and Global Spread
COVID-19 transmission became aworldwide problemwithin
a few months that depended on the contagiousness of the
virus. According to the World Health Organization (WHO),
the SARS-CoV-2 can spread from infected people to others in
small droplets and aerosols by coughing, sneezing, or even
speaking and singing. Current evidence also suggests that the
virus spreads mainly between people who are in close
contact, typically within 1m. Even when the distance is
not so close, the virus can also spread in poorly ventilated
or crowded spaces if people spend long periods of time
(https://www.who.int/news-room/q-a-detail/coronavirus-
disease-covid-19-how-is-it-transmitted#:~:text=•%20Cur-
rent%20evidence%20suggests%20that,nose%2C%20or%
20mouth).

Unlike coronaviruses, the risk of airborne transmission of
viral hemorrhagic fever is infrequent, andmost of the viruses
require specific carriers. For Dengue fever caused by Flavivi-
rus, the primary vector is the widespread biting mosquitoes
(primarilyAedes aegypti, but alsoAedes Albopictus). Although
these mosquitoes are of Asian origin, they have spread to
many subtropical areas in Africa, Europe, South America, and
the United States along with increased international travel
and global trade.6 Because of ongoing climate change, pole-
ward shifts are likely in Aedes-borne virus distributions.
Nearly a billion people are estimated to be threatened with
new exposure to virus transmission by Aedeswithin the next
century.7

In addition to mosquitos, other arthropods carry addi-
tional viruses that induce coagulopathy such as severe fever
with thrombocytopenia syndrome (SFTS). SFTS is a newly
emergent tick-borne fast-growing public health problem
caused by Bunyavirus. Although tick vectors of SFTS are
found in awide geographic area, SFTS has only been reported
from a limited area of Southeast Asia, such as China, South
Korea, Vietnam, and Japan. However, it may become more
prominent in the future due to the increased international
communication and the expansion of the areas where the
vectors can live.8 Crimean-Congo hemorrhagic fever is an-
other tick-borne viral hemorrhagic fever currently found in
Europe, Asia, Africa, the Middle East, and the Indian subcon-
tinent. A troublesome aspect of this disease is an asymptom-
atic infection and the viruses can be spread to the areas that
have never experienced such diseases. Also, a secondary
transmission can occur through contact with infected blood
and other bodily fluids.9

Humans can also be a vector for some diseases. In some
hemorrhagic fever viruses, especially in arenaviruses and
filoviruses, human-to-human transmission can occur and is
commonly attributed to the direct contact with the infected
blood, stool, other body fluids, and contaminated fomites.10

Regarding Ebola hemorrhagic fever, long-term viral persis-
tence in the male reproductive tract and their potential for
sexual transmission were reported, and the link to the
sporadic transmission and re-emergences is suspected.11

Since the pandemic in 2020,more than 148million people
were infected, andmore than 3.1 million people have died of

Table 1 Viral hemorrhagic fever4,12,21,23

Virus Disease Geographical region Transmission Fatality rate Death/year

Filovirus Ebola HF Central Africa Human–human 50� 90% <10,000

Marburg HF Central Africa Human–human 50% <10

Flavivirus Dengue HF Tropics worldwide Mosquito-borne 1� 5% 22,000

Arenavirus Lassa fever West Africa Rodents exposure 1� 15% 5,000

Bunyavirus Crimean-Congo HF Africa, Southeast Europe,
Middle East, etc.

Tick-borne 30� 60% <10

Hantavirus disease (HFRS) Eurasia, America, etc. Rodent exposure 1� 40% 10,000

SFTS East Asia Tick-borne 12� 30% <50

Abbreviations: HF, hemorrhagic fever; HFRS, hemorrhagic fever with renal syndrome; SFTS, severe fever with thrombocytopenia syndrome.
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COVID-19 (by April 27, 2021). On the other hand, the
epidemiology of viral hemorrhagic fever is less understood,
with estimations that over 100million peopleworldwide are
infected, causing over 60,000 deaths annually.12 Although
the infection is sporadic and has not spread widely, viral
hemorrhagic fever is a latent serious threat in the future.

Clinical Features

Thrombogenicity in COVID-19
The clinical features regarding coagulation disorders are
quite different between COVID-19 and viral hemorrhagic
fever. SARS-CoV-2 infection is characterized by a high prev-
alence of thrombotic complications, with a recent estimated
overall prevalence of venous thromboembolism (VTE) of
14.1% (95% confidence interval [CI]: 11.6�16.9),13 and the
incidence of VTE in COVID-19 is at least threefold higher than
reported with other viral respiratory infections.14,15 In more
critically ill patients, the incidence of VTE is reportedly 45.6%
(95% CI: 31.0�66.2). Meanwhile, the prevalence of throm-
boembolic events was 23.0% (95% CI: 3.2�52.5; I2, 96.5%) in
non-ICU patients.10 The COVID-19 coagulopathy is initiated
from the local lung injury. Following the initial localized
thromboinflammatory response, systemic hypercoagulabil-
ity becomes prominent. Coagulation tests that include pro-
thrombin time (PT) and activated partial thromboplastin
time (aPTT) are usually normal, meanwhile more sensitive
viscoelastic testing demonstrates a hypercoagulable pattern
mainly due to activated coagulation and platelets.16 Since
SARS-CoV-2 injures vascular endothelial cells, the loss of
anticoagulant property is another critical factor for
prothrombotic changes. Internalization of angiotensin-
converting enzyme 2 (ACE2) to increase angiotensin II levels
causes vasoconstriction, hyperinflammation, and the release
of prothrombotic substances such as von Willebrand factor
(VWF), P-selectin, factor VIII, and angiopoietin 2.17,18 These
factors are all involved in the pathogenesis of thromboge-
nicity in COVID-19.19 In CAC, bleeding can occur, especially
in advanced stages of critically ill patients. Increased hemor-
rhage can occur due to thrombocytopenia, platelet dysfunc-
tion, and consumptive coagulopathies often complicated
by secondary infections.20

Coagulopathy in Viral Hemorrhagic Fever
In viral hemorrhagic fever, the clinical manifestations
and degrees of severity vary considerably among the dis-
eases, and patients do not always develop a classic hemor-
rhagic fever syndrome. Viral virulence, routes of exposure,
and host conditions are the major determinants.21 The
classic viral hemorrhagic fever is characterized by fever
and malaise, headache, muscle ache, and joint pain in its
early phase similar to influenza.22 Minor bleeding can occur
that includes petechiae, epistaxis, and bleeding gums, which
may help recognize viral hemorrhagic fever in its early
state.23 Although these viral infectious diseases commonly
include gastrointestinal symptoms, they rarely develop re-
spiratory dysfunction and/or acute lung injury, unlike coro-
navirus diseases. In the advanced stage of severe viral

hemorrhagic fever, vascular injury results in an increased
permeability, hypovolemia, and circulatory shock. Shock can
also occur in COVID-19. Multisystem inflammatory syn-
drome in children (MIS-C) and multisystem inflammatory
syndrome in adults (MIS-A) are rare postinfectious compli-
cations that are characterized by fever, systemic inflamma-
tion, abdominal pain, and cardiac involvement. The
symptoms usually occur late, while the sudden onset of
severe systemic inflammation with shock reminds the toxic
shock syndrome. The etiology of MIS-C and MIS-A is uncer-
tain but derangement of the autoimmune reaction is sus-
pected.24 Increased permeability in viral hemorrhagic fever
also induces coagulation defects that can result in critical
bleeding.25 The systemic viral infection also induces an acute
inflammatory and hypercoagulable state causing dissemi-
nated intravascular coagulation (DIC) that increases the risk
ofmultiorgan failure and death. However, with the exception
of Ebola andMarburg hemorrhagic fevers, bleeding is rarely a
direct cause of death (►Fig. 1).12

Unlike other viruses, hantavirus (family of Bunyavirus) is
known to cause respiratory symptoms. Hantavirus involves
two clinical presentations: “hemorrhagic fever with renal
syndrome” and “hantavirus cardiopulmonary syndrome”26

characterized by a distinctive febrile phase and pulmonary
infection, myocardial depression, and hematologic manifes-
tations. Atypical viral pneumonia with cough, tachypnea,
and hypoxemia are the main features, and the reported
mortality rate is approximately 40%.27

Coagulopathy is common in filovirus diseases but also
seen in dengue fever. The clinical features of dengue fever
include an abrupt high fever, headache, pain behind the
eyes, muscle, bone, and joint, nausea, vomiting, and rash.28

These symptoms represent an activated immune response
characterized by increased cytokine production, comple-
ment activation, and histamine release. Petechiae, gingival,
mucosal bleeding, and sustained bleeding at the

Fig. 1 Comparison of coagulopathy evoked by viral hemorrhagic
fever and COVID-19. In the typical course of severe viral hemorrhagic
fever, the significant suppression in adaptive immune system along
with the abrupt activation in the coagulation system is induced
initially which immediately turns to the consumptive coagulopathy
phase. As a result, hemorrhage is the main phenotype in the late
phase. In contrast, the activation in coagulation is mainly localized in
the lung in COVID-19, and the systemic thrombotic phase lasts longer.
The consumptive coagulation disorder is seen in limited cases even in
a late phase.
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venipuncture site can occur. These symptoms usually di-
minish in a week, but a small proportion of patients develop
dengue hemorrhagic fever, which complicates bleeding and
shock.28 In 1997, the WHO characterized the typical dengue
hemorrhagic fever by four major clinical manifestations: (1)
sustained high fever for 2 to 7 days; (2) a hemorrhagic
tendency, such as a positive tourniquet test, or clinical
bleeding; (3) thrombocytopenia (platelets � 100 �109/L);
and (4) evidence of plasma leakage manifested by hemo-
concentration (>20% increase in hematocrit) or pleural
effusion.29 Dengue fever became a global problem after
the Second World War, and now it is common in Africa,
Southeast Asia, and South America.

Virological Analysis: Unique Viral Characteristics
Except for the highly virulent coronaviruses, there are four
less-harmful coronavirus families that cause common cold
symptoms in humans. Gussow et al30 analyzed the genome
of SARS-CoV-2 along with other coronaviruses by using
integrated comparative genomics and machine-learning
techniques. As a result, they identified the key genomic
features that differentiate SARS-CoV-2 and the other two
previously recognized high-fatality coronaviruses, SARS-CoV
and the Middle East respiratory syndrome (MERS) coronavi-
rus, from other less pathogenic coronaviruses. It is believed
that the genomic feature coding the spike protein is respon-
sible for the cellular internalization of SARS-CoV-2 into host
cells and viral transmission capability.31 Besides the higher
capability of transmission and camouflage, the spike pro-
tein’s unique features include virus-induced derangement of
endothelial function and activation of coagulation. Interac-
tion of the spike glycoprotein with ACE2 attenuates ACE2’s
function of catalyzing the hydrolysis of angiotensin II, a
critical mediator that increases thrombogenicity and
produces vasoconstriction.32,33

There are multiple factors in the pathogenesis of viral
hemorrhagic fever that include virus-specific virulence and
host immune responses. In dengue fever, most cases are
asymptomatic ormild illnesswithflu-like symptoms, such as
fever, headache, myalgia, decreased platelet counts, and
leucopenia.34 However, certain patients develop a severe
syndrome known as dengue hemorrhagic fever and dengue
shock syndrome. Genetic differences among dengue geno-
types are associated with a differential viral virulence that
may contribute to progression of severe disease.35 For exam-
ple, the Southeast Asian Dengvirus-2 genotype is reported to
have emerged more virulent than the indigenous American
genotype.36 Currently, dengue viruses are classified epide-
miologically into three classes: low, medium, and high
impact, and each class connects to either remaining low
transmissibility, inducing dengue fever, or eliciting dengue
hemorrhagic fever/dengue shock syndrome in terms of
severity.37 Although antigenic and genetic differences in
virus strains are evident, it is not easy to detect viral
virulence mainly due to the lack of an animal model. Inde-
pendent from the genotype difference, serotype evolution
can be another cause of increasing viral virulence as ob-
served in the variant form of SARS-CoV-2. Clinical manifes-

tations of an increased dengue fever fatality rate during
epidemics have been reported,38 but the relationship be-
tween intragenotype evolution and hemorrhage remains
unclear. Perhaps, dengue fever virus replication speed and
the potential to evoke host responses such as type I interfer-
on (IFN) production rather than the genotypic characteristic
may have a greater influence (►Fig. 1).

Pathogenic Mechanisms of Hyper- or
Hypocoagulability
The mechanism of coagulopathy in COVID-19 has been
extensively investigated and revealed to have some similari-
ties and differences to that of bacterial sepsis-induced coa-
gulopathy. Thrombin generation is the critical event,which is
the interface between coagulation and inflammation. DIC
often complicates severe sepsis due to the multiple factors
that include activated innate immune system represented by
the release of inflammatory cytokines, increased neutrophil
extracellular trap (NET) formation, and extracellular release
of damage-associated molecular patterns (DAMPs) from
lysed cells. These factors lead to the upregulated coagulation,
decreased anticoagulation, suppressed fibrinolysis, platelet
activation, and endothelial damage in sepsis. Upregulated
adaptive immunity, activated complement system, and the
endothelial infection with SARS-CoV-2 produce a throm-
boinflammatory process in COVID-19.39 In contrast, sup-
pression of adaptive immunity is recognized in severe cases.
Saichi et al40 reported the apoptosis and impairment, down-
regulated response to type I INF, and the decrease of major
histocompatibility complex class II-related activity of the
dendritic cells. In these severe COVID-19 cases, viral replica-
tion cannot be suppressed as a consequence of downregu-
lated adaptive immunity. The elevated circulating clotting
factors that include fibrinogen, factor VIII, and VWF released
from the infected endothelial cells, the loss of the antith-
rombotic function with glycocalyx damage, and decreased
ACE2, reduced nitric oxide production, and thrombomodulin
release also contribute to the coagulopathy and thromboin-
flammation19 (►Fig. 2). In addition, the massive release of
multimeric VWF from injured endothelium may overwhelm
and consume the VWF cleaving protease, ADAMTS13, as
reported in other infectious diseases.41,42 The resulting
excess of high-molecular-weight multimeric VWF can con-
tribute to (localized) thrombotic microangiopathy. This pro-
thrombotic tendency of COVID-19 is also recognized in other
invasive coronavirus diseases such as SARS andMERS.43Mild
tomoderate D-dimer elevation is the only laboratory finding
frequently seen in CAC in its early phase, which appears to
represent the localized prothrombotic response in the
lung.1,2,44,45

Viral hemorrhagic fevers show common pathogenic fea-
tures that disable the host immune response by attacking
andmanipulating the immune cells, including dendritic cells
and macrophages that initiate the antiviral response.20 The
pathogenic viruses rapidly replicate in these cells with
extensive perturbations of the host immune responses. In
viral hemorrhagic fevers, pathogens infect and replicate
within these antigen-presenting and cytokine-producing
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cells and then disseminate rapidly within various host cell
types. Viral dissemination is aided by the suppression of type
I IFN responses due to the myeloid dendritic cell malfunc-
tion.46 Infected dendritic cells are impaired, and the loss of
their appropriate function can lead to lymphocytic apoptosis
and excess other types of lymphocyte cell death, findings
that are linked to fatality. Although the suppression in
dendritic cell–T cell reactions is distinctive, macrophages
are triggered to release cytokines, induce increased vascular
permeability, and upregulate innate immune responses.1,47

Subsequent responses include cytokine storm, NET forma-
tion, and DAMP release as host immune responses.48 Togeth-
er with triggering inflammation, the viruses also activate
coagulation cascades and result in DIC (►Fig. 3). SARS-CoV-2
also infects cytokine-producing cells and induces overt
but delayed type I IFN responses. Lei et al49 found that
SARS-CoV-2 viral protein ORF6 inhibits both type I IFN
production and downstream signaling. They also reported
that IFN-β treatment effectively blocks SARS-CoV-2 replica-
tion. The higher viral load may associate with the severity of
COVID-19. Xu et al50 reported that organ damages such as
respiratory failure, cardiac damage, and coagulopathy were
more remarkable in patients with circulating SARS-CoV-2
nucleic acid than in patients without. SARS-CoV-2 has the
ability to circumvent innate immune detection by impeding
antiviral IFN responses which leads to widespread infection

and increased viral load. However, despite immune subver-
sion, SARS-CoV-2 infection activates innate immune path-
ways. Altogether, SARS-CoV-2 infection finally induces
hyperinflammation and hypercoagulation.51

The bleeding tendency in dengue hemorrhagic fever is
mild compared with Ebola and Marburg hemorrhagic fever
and more like that seen in COVID-19. The underlying mech-
anisms include tissue factor-induced coagulopathy,
vasculopathy, endotheliopathy, and thrombopathy.52 The
appearance of thrombosis-predominant status in the early
stage of COVID-19 is explained by the localized inflammato-
ry response in the lung, while a consumptive coagulopathy
can occur in later stages of the disease.53 DIC becomes more
prominent in patients with shock because of the reduced
production of both coagulation factors and anticoagulants,
and the potential for secondary infections.54

Evaluation of the most pathogenic Ebola virus (family of
Filovirus) has provided important information regarding the
suppression of the adaptive immune system where viral
infection of the antigen-presenting cells triggers immune
dysregulation. Besides disabled monocytes/macrophages to
produce inflammatory cytokines, infected dendritic cells
lose the potential to undergo proper maturation, and adap-
tive immunity is impaired.48 Uncontrolled rapid virus repli-
cation and subsequent inflammatory responses promote
vascular leakage and loss of clotting factors. The pathological

Fig. 2 Pathogenesis of COVID-19-associated coagulopathy. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly infects
macrophages/monocytes, which provoke inflammation and thrombosis by releasing proinflammatory cytokines, such as tumor necrosis
factor (TNF)-α, interleukin (IL) 1β and IL6, and expressing tissue factor (TF). Activated neutrophils eject neutrophil extracellular traps (NETs) and
disrupt the antithrombogenicity by damaging glycocalyx. Thrombin is the central mediator that activates endothelial cells, elicits a
proinflammatory reaction, prothrombotic change, and activates platelet aggregation. SARS-CoV-2 also infects endothelial cell through binding
to angiotensin converting enzyme 2 (ACE2) and stimulates the release of factor VIII, VWF, and angiopoietin 2 (Ang2). EC, endothelial cell; MPO,
myeloperoxidase; PAI-1, plasminogen activator inhibitor 1; VWF, von Willebrand factor.
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findings of the primate model of Ebola infection revealed a
marked microvascular thrombosis that mimics immuno-
thrombosis.55 Consumptive coagulopathy and vascular dam-
age play important roles; however, the further definition of
the coagulation disorder in viral hemorrhagic fever remains
to be determined.56

Further details of the pathogenesis and terminology are
explained below.

Activated Immune Responses
A profound innate immune response, also known as a
“cytokine storm,” may play a role in CAC, although this
excessive response is probably restricted to the lungs, as
plasma cytokine levels in severely ill COVID-19 patients are
rather low compared with those found in other critically ill
patient categories.57,58 SARS-CoV-2 can directly infect im-
mune cells such as macrophages and monocytes, leading to
the upregulation of innate immune system by releasing
proinflammatory cytokines. In severe COVID-19, since
anti-interleukin (IL)-6 receptor monoclonal antibody and
corticosteroids improve disease severity and reduce mortal-
ity, host immune responses likely play causal roles in disease
progression.59,60 Additional pathways of specific relevance
in CAC include the activation of complement and autoim-
mune responses.61 The adaptive immune system is sup-

pressed, and antibody responses, including neutralizing
antibodies, are impaired, furthermore, lymphocytes failed
in producing IFN-γ against viral proteins.62 In viral hemor-
rhagic fever, especially in Ebola and Marburg hemorrhagic
fevers, activation in innate immune system and impairment
of adaptive immune systems are more remarkable and
symptoms are severe.63 In the case of less severe disease,
dengue fever, a variety of host innate immune responses are
initiated through the recognition of pathogen-associated
molecular patterns by its specific receptor pattern recogniz-
ing receptor. Similar to COVID-19, innate immune cells such
as dendritic cells, macrophages, and monocytes enhance the
production of cytokines and chemokines, which induce an
antiviral state. Especially, the production of type I IFN
inhibits viral infection to other immune cells. However, in
some cases, although innate immune pathways including
type I INF, complement system, apoptosis, and autophagy are
activated, the viruses evade or exploit these reactions and
lead to dengue hemorrhagic fever/dengue shock syn-
drome.64 In severe dengue cases, the complement system
is activated and C3a and C5a contribute to the increased
capillary permeability and activation in coagulation. The
autoimmune reaction is also involved in pathogenesis. The
dengue virus stimulates T cells to increase the production of
specific antibodies, nonstructural protein 1 (NS1) that

Fig. 3 Pathogenesis of viral hemorrhagic fever. Infected dendritic cells and macrophages lose their ability to produce type I interferon (IFN)
sufficiently and lymphocytes fall into cell death. Inappropriate dendritic cell function causes a perturbation in the innate immune system
that leads to increased vascular permeability. Furthermore, the replicated viruses disseminate throughout the body and induce a variety of
systemic reactions, such as dysfunction of the visceral parenchymal cells, platelet disability, and coagulopathy which lead to disseminated
intravascular coagulation leading to uncontrolled hemorrhage. EC, endothelial cell; IFN, interferon; IL, interleukin; MCP-1, monocyte
chemoattractant protein 1; NETs, neutrophil extracellular traps; PAR-1, protease activated receptor 1; TF, tissue factor.
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evokes the cross-reaction to platelets, coagulation factors,
adhesion molecule, and endothelial cells.65 Consequently,
the bleeding in dengue infection is caused by thrombocyto-
penia, coagulopathy, and vasculopathy. The autoimmune
response is also deeply related to the pathogenesis of
coagulation disorder in COVID-19. The presence of antiphos-
pholipid antibodies, such as lupus anticoagulants, anticar-
diolipin, and anti-β2-glycoprotein 1 antibodies, has been
repeatedly reported.66 Other autoimmune thrombotic dis-
eases such as immune thrombocytopenic purpura and
thrombotic thrombocytopenia that mimics heparin-induced
thrombocytopenia (HIT) have been observed.67 The pertur-
bation of host immune systems plays a critical role in
determining coagulation disorder and disease severity.

Procoagulation
In Ebola hemorrhagic fever, phosphatidylserine on the viral
surface, stimulates inflammatory cytokine secretion which
generates enough thrombin to consume coagulation factors
and induces consumptive coagulopathy.68 Activated leuko-
cytes including monocyte and macrophage extracellular
vesicles released from leukocytes potentiate procoagulant
states via tissue factor expression, NET generation, and
release of DAMPs.69 The procoagulant responses are impor-
tant host defense mechanisms to limit pathogen spread;
however, excessive activation in coagulation is deleterious
for thehostmicrocirculation and tissue perfusion, disrupting
the normal balance of coagulation and inflammation. For
example, protease-activated receptors (PARs) such as PAR1
and PAR2 modulate the coagulation as well as an immune
response to viral infection per se; PAR1 positively regulates
toll-like receptor 3-dependent expression of the antiviral
cytokine IFN-β, whereas PAR2 negatively regulates the ex-
pression.70 The blast of thrombin generation upregulates
inflammatory cytokine production, activates leukocytes and
platelets, and stimulates the prothrombotic proteins such as
VWF, P-selectin, and platelet factor 4 from the endothelial
cells via PAR1-mediated signaling.71After all, the coagulation
cascade and inflammatory response collaboratively play
multiple roles in viral infections. Immunothrombosis, the
final product of inflammation and coagulation, provides and
important platform for the occurrence of viral coagulopathy.
SARS-CoV-2 infection induces a process known as immuno-
thrombosis, in which activated neutrophils and monocytes
interact with platelets and the coagulation cascade, leading
to intravascular clot formation in small and larger vessels.72

Middleton et al73 demonstrated that NET-related factors
such as circulating myeloperoxidase (MPO)-DNA are signifi-
cantly related to COVID-19 severity and progression. Fur-
thermore, the lung autopsies confirmed the NET-containing
microthrombi with neutrophil-platelet infiltration. In han-
tavirus infection, increased levels of circulating NET compo-
nent, extracellular histones, and neutrophil elastase, suggest
the involvement of immunothrombus formation in the
pathogenesis of the disease.74 Similarly, the contribution of
thromboinflammatory phenotype achieved by synergistic
activation of NS1 with other platelet agonists is reported
in dengue virus infection.75

Endotheliopathy
In healthy conditions, vascular endothelial cells play pivotal
roles in maintaining intravascular patency via their antico-
agulant properties by producing nitric oxide and prosta-
glandin I2, expressing or binding anticoagulant proteins
that include antithrombin, tissue factor pathway inhibitor,
and protein C. The glycocalyx that covers the surface of
endothelium also contributes to antithrombogenicity.
Endothelial cells also provide a scaffold for intravascular
coagulation and thrombosis by reducing anticoagulant
effects by expressing procoagulant molecules including
tissue factor and phosphatidylserine, and provide antifibri-
nolytic surface by the sustained production of plasminogen
activator inhibitor-1.76 In CAC, infected endothelial cells
release VWF, factor VIII, angiopoietin 2, and P-selectin
from the Weibel–Palade body and further accelerate throm-
bogenicity.19 Although increased vascular permeability is
the hallmark of viral hemorrhagic fever, its mechanisms
remain unclear. Other than direct infection and subsequent
destruction of endothelial cells, inflammatory mediators,
cytokines, and chemokines may contribute to the patho-
genesis.25,77 Vitoria et al78 postulated the increased expres-
sion of adhesion molecules such as intracellular adhesion
molecule 1 and vascular cell adhesion molecule 1 in glo-
meruli in severe dengue fever and their relevance to the
renal dysfunction. Durbin79 reported that dengue virus can
cause mast cell degranulation resulting in the release of
many vasoactive mediators. Additional pathways including
complement system activation and release of platelet-
activating factor have also been reported.80,81

Vasculopathy
In addition to the endothelial cells, viruses can injure the
vascular wall, which can cause vascular diseases and arterial
thrombosis.82 COVID-19 is known to be associated with a
high risk of stroke and acute coronary syndrome, with
reported rates of 2.5 and 1.1%, respectively.83 Activated
platelets and vasculitis caused by the immune complexes
are considered major etiologic factors in the pathogenesis of
arterial thrombosis.53 Roncati et al84 reported that the
deposition of immune complexes inside the vascular walls
causes an inflammatory reaction via type 3 hypersensitivity.
Unlike COVID-19, ischemic vascular diseases are uncommon
in viral hemorrhagic fever, but vasculopathy is sometimes
seen in dengue fever. The symptom of dengue fever usually
peaks between 4 to 7 days after the onset, but an activated T
cell-mediated vasculitis may follow. The derangement of
plasmablasts (a short-lived differentiation stage between a
postgerminal center B cell and a mature plasma cell), com-
plement, and platelets is involved in the progression of the
disease. That is, antivirus-specific antibodies produced by
plasmablasts form immune complexes, leading to activation
of complement and release of vasoactive anaphylatoxins.85

Other than that, the presence of infection-induced anti-MPO
antineutrophil cytoplasmic antibody-associated vasculitis is
reported.86

As for the treatment of autoimmune vasculitis in
COVID-19, methylprednisolone, cyclophosphamide, and
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plasma exchange are the potential choice; however, there
is no supportive evidence.87 Regarding anticomplement
therapy, Vlaar et al88 reported a phase 2 randomized
controlled trial (RCT) investigating a complement pathway
inhibitor for severe COVID-19. IFX-1, an investigational
drug that inhibits C5a, demonstrated the nonsignificant
relative change in PaO2/FiO2 on day 5 of �24% (95% CI: �58
to 9, p¼0.15).

Thrombopathy
Thrombopathy has two contrastingmeanings, activation and
dysfunction. In COVID-19, platelet count usually stays within
the normal range even in severe cases.89 Since unusually
large VWFmultimer levels are increased, it is speculated that
platelet aggregation is further enhanced, contributing to the
thrombus formation. Meanwhile, although the platelet count
does not decrease, increased immature platelet fraction and
enhanced platelet turnover and reactivity may have a role in
the development of thrombotic events in COVID-19.60

Platelets are further activated through immune complex-
mediated reaction mechanisms that resemble HIT.90

Furthermore, activated interaction of platelets with other
cell types may contribute to COVID-19 pathophysiology.
Manne et al91 reported that circulating platelet–neutrophil,
–monocyte, and –T cell aggregates were significantly elevat-
ed in COVID-19 patients. In contrast, thrombocytopenia and
platelet dysfunction that relate to bleeding and plasma
leakage are frequently observed in viral hemorrhagic fever.
Thrombocytopenia is the result of activation and aggregation
in response to the infection.92 In dengue fever, neither VWF
antigen nor activity is high, and platelet–VWF binding cor-
relatedwith platelet count.93When the platelet count is low,
it is suggested that the platelet-derived extracellular vesicles
increase and participate in the increased vascular perme-
ability.94 In comparison to thrombocytopenia, abnormalities
in platelet function have been largely overlooked. However, it
is important to consider that platelet dysfunction also con-
tributes to the bleeding tendency that characterizes viral
hemorrhagic fever.92

Laboratory Findings
Laboratory findings in COVID-19 patients often demonstrate
increased inflammatory and vascular biomarkers such as IL-
6, procalcitonin, ferritin, and troponin-I, and showed their
significant association with mortality. White blood cell
counts increase minimally with elevated neutrophil/lym-
phocyte ratios, and red blood cell count, hemoglobin, and
hematocrit show minor decreases. Increased D-dimer levels
are frequently seen but prolonged PT and aPTT are less
common. Platelet count does not decrease initially, but a
count <100�109/L indicates a worse prognosis.89 In addi-
tion to the platelet count, enhanced platelet turnover is
represented by a high immature platelet count and its
fraction is reported to indicate a poor prognosis.60,95 The
incidence of DIC is approximately 3%, but is associated with
increased mortality.45 Increases in D-dimer, fibrinogen,
VWF, factor VIII, and the presence of antiphospholipid anti-
bodies are the risk factors of thrombotic events.96

Patients with viral hemorrhagic fever often demonstrate
abnormal laboratory findings. Typically, lowwhite blood cell
counts with decreased neutrophils and increased lympho-
cytes, decreased platelet counts, and increased hematocrit
are recognized. Marked leucopenia and high viral loads in
5 days after the onset of fever are known to be associated
with fatal outcomes. The low platelet count, prolonged PT
and aPTT, and decreased fibrinogen were the prognostic
factors associated with mortality.97 The incidence of DIC
differs among the diseases and severity, but is commonly
seen in the early stages of Ebola hemorrhagic fever.98 In-
creased levels of inflammatory cytokines in relation to the
coagulation abnormality are reported and the peak level of
IL-6 was much higher than that in COVID-19.98,99 In severe
dengue fever, abnormal functions of the platelet function
manifested as impaired platelet aggregation to ADP and
serotoninwere reported.100As for the plasma level of natural
anticoagulants, antithrombin activity is usually normal, but
protein C and protein S levels are modestly reduced. The
functional change in the fibrinolytic system is minimal, and
slightly increased tissue-plasminogen activator accompa-
nied by increased plasminogen activator inhibitor-1 and
decreased thrombin-activatable fibrinolysis inhibitor has
been reported.101 The changes in laboratory tests are similar
to those seen in COVID-19. Viscoelastic testing of whole
blood also demonstrates that hypercoagulation is reported in
COVID-19. In contrast, hypocoagulation is usually recognized
in viral hemorrhagic fever; however, the hypercoagulation is
detected in the early phase of illness even in most hemor-
rhagic Ebola virus infections.102

Treatment Strategy for the Coagulopathy
There has not been any specific treatment for managing
hemostatic disorders in viral hemorrhagic fever except re-
placement therapy for the hemorrhage. However, since
procoagulant change due to the thrombin generation is
one of the major mechanisms in coagulopathy, anticoagula-
tion may be the optional therapy at specific timing, and
tissue factor/factor VIIa complex inhibitor and activated
protein C were reported to reduce the mortality in a primate
model of Ebola hemorrhagic fever.70,103 Another study that
used a primate model of Ebola hemorrhagic fever has also
shown that blocking of the coagulation system by recombi-
nant nematode anticoagulant protein c2 can result in im-
proved survival with reduced viral replication. In this model,
treatment with an anticoagulant resulted in the attenuation
of coagulation responses, lower concentrations of proinflam-
matory cytokines, improved survival, and prolonged time to
death. These favorable effects were achieved with signifi-
cantly lower peak viral loads, indicating that anticoagulation
does not necessarily increase the viral replication.104 Not
surprisingly, the same treatment was less effective in a
model of another hemorrhagic fever virus infection namely
Marburg virus that shows less prominent tissue factor
induction and fibrin deposition.105

Since, other than the consumption and suppressed produc-
tion, loss of coagulation factors with increased vascular perme-
ability attributes to the hemostatic insufficiency, suppressions
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of inflammation can be the choice for treatment of the viral
hemorrhagic fever.106 However, it is noteworthy that substitu-
tion of coagulation factors and plasma protein for capillary leak
syndrome can also be harmful. In contrast, the anti-inflamma-
tory therapies with dexamethasone and tocilizumab were
shown to be effective in severe COVID-19, and a similar strategy
should be studied in viral hemorrhagic fever.59,107

In COVID-19, the effectiveness of antiviral therapy, anti-
inflammatory therapy, and organ support continues to be
defined, along with thromboprophylaxis as a standard of
care for hospitalized patients. The importance of pharmaco-
logic prophylaxis for VTE has repeatedly been reported. In a
recent meta-analysis, Patell et al108 accumulated data from
35 cohort studies to compare pharmacologic dosing strate-
gies among nearly 11,000 hospitalized COVID-19 patients
and reported a lower incidence of venous and arterial
thromboembolism in patients who received pharmacologic
prophylaxis. Pharmacologic prophylaxis is administered to
reduce the thrombotic events, improve disease severity, and
modify outcomes as extensively reported; however, the
optimal anticoagulation dose continues to be investigated.
Recently, the results of the combined large-scale multina-
tional RCT that compared the effect of standard (prophylac-
tic) dose and full (therapeutic) dose heparin have been
released.109 This interim report from the collaboration study
of ATTACC,110 ACTIV-4A, and REMAP-CAP is now available
online (https://www.attacc.org/presentations). The results
showed that full-dose heparin increased the organ-support-
free days and demonstrated the trend toward an improved
outcome in moderately ill patients, with an incidence of
major bleeding of less than 2%. However, the same benefit
was not seen in severely ill patients, suggesting that anti-
coagulation may be effective only when applied at the
appropriate time.

In addition to unfractionated and low-molecular-weight
heparins, the effects of sulodexide, a highly purified mixture
of glycosaminoglycans composed of low-molecular-weight
heparin (80%) and dermatan sulfate (20%), are expected. The
prevention of recurrent thromboembolism had already been
shown in an RCT,111 and recent RCTs revealed the prevention
of disease progression in COVID-19 patients required hospi-
talization compared with the placebo group (relative risk:
0.6; 95% CI: 0.37–0.96).112

Other than anticoagulant therapy, antiplatelet therapy
may also be a potential consideration for COVID-19. A
propensity score-matched analysis reported a significantly
lower incidence of in-hospital death in the aspirin cohort
compared with no aspirin.113 However, antiplatelet therapy
will increase the risk of bleeding when combined with
anticoagulant therapy.

Although it is still in a preliminary stage, the beneficial
effect of antivascular endothelial growth factor agent bev-
acizumabwas reported. For COVID-19, bevacizumab showed
clinical efficacy by improving oxygenation and shortening
oxygen-support duration in 26 severe cases.114 It should be
cautioned that bevacizumab can increase the thrombotic as
well as bleeding risks.115 Other than these, the increases of

alanine aminotransferase and anemia were reported in the
clinical trial.

Conclusion

Since the outbreak in early 2020, the COVID-19 global
pandemic has posed many challenges to health care systems
worldwide. Due to global warming and the rapid spread of
international trade and traveling, viral hemorrhagic fever can
be an upcoming threat. In our battle against the challenges of
new and revisited viral infectious diseases, the accumulated
knowledge and the experience of international collaboration
from the present pandemic will be helpful. Concerning the
pathophysiology of coagulation disorders, although the clin-
ical features may be different, the fundamental mechanism,
i.e., initial activation in coagulation and subsequent con-
sumptive coagulopathy, can be similar. As for the treatments,
replacement therapies for hemorrhage are common. Mean-
while, pharmacological anticoagulation is highly recom-
mended in COVID-19, and timely anticoagulation should
also be considered for viral hemorrhagic fever.
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