Whereas retrospective literature confirms the comparable clinical success of endoscopic ultrasound-guided gastrojejunostomy (EUS-GJ) and surgical gastrojejunostomy (SGJ) [1, 2], no head-to-head comparison exists of their caliber and long-term patency.

We present one case of a patient receiving both procedures, offering an unusual opportunity for direct comparison (▶Video 1).

A 52-year-old patient was diagnosed with gastric outlet obstruction owing to a duodenal B-cell lymphoma. EUS-GJ was performed using a 20-mm lumen-apposing metal stent (LAMS), followed by 18-mm balloon dilation [3] (▶Fig. 1).

Upon disease remission with chemotherapy, a blind-ended bulb resulted from scarring of the stenotic duodenal tract. Although the EUS-GJ was wide and patent (▶Fig. 2), erosions were appearing on the jejunal side after 8 months (▶Fig. 2 c) and an SGJ was proposed owing to the uncertainty of long-term patency of the EUS-GJ and a potentially wider caliber of the SGJ.

Following surgery, gastrointestinal follow-through (▶Fig. 3) showed adequate flow through both anastomoses, but EUS-GJ seemed reduced in diameter 13 months after placement. LAMS extraction was planned, revealing significant granulation tissue overgrowth surrounding a stabilized fistula reduced in caliber (▶Fig. 3).

On that occasion, the SGJ caliber was evaluated. Although the surgeon created an almost 5-cm incision, a 20-mm balloon perfectly fitted the final SGJ (▶Fig. 4).

Indeed, SGJ requires a linear incision of stomach and jejunal walls and latero-lateral suturing of their inferior and superior margins [4]. This elliptic anastomosis will become round after maturation and scarring, with a smaller final circular diameter compared to the initial linear cut (▶Fig. 5).

Pending randomized data, this case suggests a comparable caliber of SGJ and EUS-GJ for a substantial part of their history, and therefore an assumed larger diameter should not be used as a reason to prefer SGJ. However, it also suggests that long-term LAMS friction may induce inflammatory responses deserving further elucidation, especially when advocating EUS-GJ use in benign disease.

Competing interests

Michiel Bronswijk has consultancy agreements with Prion Medical – Taewoong. Schalk Van der Merwe holds the Cook and Boston-Scientific chair in interventional endoscopy and holds consultancy agreements with Cook, Pentax and Olympus. The remaining authors declare no COI relevant for this article.
The authors

Giuseppe Vanella¹, Domenico Tamburrino², Francesco Vito Mandarino¹, Michiel Bronswijk¹, Schalk Van der Merwe³, Massimo Falconi², Paolo Giorgio Arcidiacono¹
1 Pancreatobiliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
2 Pancreatic Surgery Unit, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
3 Department of Gastroenterology and Hepatology, University Hospitals Gasthuisberg, University of Leuven, Leuven, Belgium.
4 Department of Gastroenterology and Hepatology, Imelda General Hospital, Bonheiden, Belgium

Corresponding author
Giuseppe Vanella, MD
Pancreatobiliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
Fax: +39-0226435609
vanella.giuseppe@hsr.it

References

▶ Fig. 2 Endoscopic follow-up of the endoscopic ultrasound-guided gastrojejunostomy (EUS-GJ). a, b Follow-up at 4 months: wide and patent EUS-GJ, with normotrophic mucosa on the jejunal side. c Follow-up at 8 months: initial erosions were seen on the jejunal side of the anastomosis.

▶ Fig. 3 a Endoscopic follow-through showing adequate contrast flow through both anastomoses, although EUS-GJ diameter seemed slightly reduced after 13 months. b, c Endoscopy performed for lumen-approving metal stent (LAMS) extraction 13 months after placement. b Endoscopic view of the LAMS reduced in caliber, not passable with a standard gastroscope. c After LAMS removal, significant granulation tissue overgrowth was visible surrounding a stabilized fistula reduced in caliber.
Area = π * a * b

a
b

Area = π * r^2

r = \sqrt{(a * b)}

Bibliography

Endoscopy
DOI 10.1055/a-1562-1274
ISSN 0013-726X
published online 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is a free access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online.

This section has its own submission website at https://mc.manuscriptcentral.com/e-videos