Synthesis 2022; 54(02): 499-505
DOI: 10.1055/a-1561-5557
paper

Diastereoselective Palladium-Catalyzed [4+1] Cycloadditions of 4-Vinyl-1,4-dihydro-2H-3,1-benzoxazin-2-ones with In Situ Formed Carbenes

Yan-Hua Ma
,
Fan-Xiao Meng
,
Ruo-Nan Wang
,
Ya-Xin Fan
,
Qing-Qiang Su
,
Ji-Yuan Du
We are grateful for financial support from NSFC (21602094), Natural Science Foundation of Shandong Province (ZR2016BB11), and this work was supported by Taishan Scholar Research Fund of Shandong Province.


Abstract

Herein, we present a palladium-catalyzed tandem [4+1] cyclo­addition of 4-vinyl-1,4-dihydro-2H-3,1-benzoxazin-2-ones with ­N-tosyl­hydrazones. The reaction is accomplished by merging the in situ generated aza-ortho-quinone methides (aza-o-QMs) with nucleophilic carbenes. This method enables the construction of diverse indolines with broad functional group compatibility in good yields with high levels of diastereoselectivity under mild conditions.

These authors contributed equally.


Supporting Information



Publication History

Received: 15 June 2021

Accepted after revision: 29 July 2021

Accepted Manuscript online:
29 July 2021

Article published online:
17 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Tashkhodzhaev B. Chem. Nat. Compd. 2020; 56: 587
    • 1b Patil R, Patil SA, Beaman KD, Patil SA. Future Med. Chem. 2016; 8: 1291
    • 2a O’Connor SE, Maresh JJ. Nat. Prod. Rep. 2006; 23: 532
    • 2b Lopchuk JM. Prog. Heterocycl. Chem. 2011; 23: 1
    • 2c Tokuyama H. J. Synth. Org. Chem. Jpn. 2015; 73: 1120
  • 3 Triggle DJ, Mitchell JM, Filler R. CNS Drug Rev. 1998; 4: 87
  • 4 Chang L, Podoll JD, Wang W, Walls S, O’Rourke CP, Wang X. J. Med. Chem. 2014; 57: 3803
    • 5a Kirillova MS, Miloserdov FM, Echavarren AM. Org. Chem. Front. 2018; 5: 273
    • 5b Silva TS, Rodrigues MT, Santos H, Zeoly LA, Almeida WP, Barcelos RC, Gomes RC, Fernandes FS, Coelho F. Tetrahedron 2019; 75: 2063
    • 5c Hua T.-B, Xiao C, Yang Q.-Q, Chen J.-R. Chin. Chem. Lett. 2020; 31: 311
    • 5d Abou-Hamdan H, Kouklovsky C, Vincent G. Synlett 2020; 31: 1775
    • 6a Shintani R, Murakami M, Hayashi T. J. Am. Chem. Soc. 2007; 129: 12356
    • 6b Trost BM, Chan DM. T. J. Am. Chem. Soc. 1979; 101: 6429
    • 6c Inoue Y, Ajioka S, Toyofuku M, Mori A, Fukui T, Kawashima Y, Miyano S, Hashimoto H. J. Mol. Catal. 1985; 32: 91
    • 6d Shimizu I, Ohashi Y, Tsuji J. Tetrahedron Lett. 1984; 25: 5183
    • 6e Wang C, Tunge JA. Org. Lett. 2006; 8: 3211
    • 6f Li M.-M, Xiong Q, Qu B.-L, Xiao Y.-Q, Lan Y, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2020; 59: 17429
    • 6g Du J, Hua Y.-D, Jiang Y.-J, Huang S, Chen D, Ding C.-H, Hou X.-L. Org. Lett. 2020; 22: 5375
    • 6h Trost BM, Jiao Z, Liu Y, Min C, Hung C.-IJ. J. Am. Chem. Soc. 2020; 142: 18628
    • 6i Hang Q.-Q, Liu S.-J, Yu L, Sun T.-T, Zhang Y.-C, Mei G.-J, Shi F. Chin. J. Chem. 2020; 38: 1612
    • 6j Guo W, Gómez JE, Cristòfol À, Xie J, Kleij AW. Angew. Chem. Int. Ed. 2018; 57: 13735

      Selective examples of reviews of o-QMs see:
    • 7a Li Q, Dong T, Liu X, Zhang X, Yang X, Lei X. Curr. Org. Chem. 2014; 18: 86
    • 7b Bolton JL. Curr. Org. Chem. 2014; 18: 61
    • 7c Singh MS, Nagaraju A, Anand N, Chowdhury S. RSC Adv. 2014; 4: 55924
    • 7d Wang Z, Sun J. Synthesis 2015; 47: 3629
    • 7e Jaworski AA, Scheidt KA. J. Org. Chem. 2016; 81: 10145
    • 7f Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926
    • 8a Wang C, Tunge JA. J. Am. Chem. Soc. 2008; 130: 8118
    • 8b Li T.-R, Tan F, Lu L.-Q, Wei Y, Wang Y.-N, Liu Y.-Y, Yang Q.-Q, Chen J.-R, Shi D.-Q, Xiao W.-J. Nat. Commun. 2014; 5: 5500
    • 8c Guo C, Fleige M, Janssen-Müller D, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2016; 138: 7840
    • 8d Wei Y, Lu L.-Q, Li T.-R, Feng B, Wang Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2016; 55: 2200
    • 8e Guo C, Janssen-Müller D, Fleige M, Lerchen A, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2017; 139: 4443
    • 8f Li M.-M, Wei Y, Liu J, Chen H.-W, Lu L.-Q, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 14707
    • 8g Mei G.-J, Li D, Zhou G.-X, Shi Q, Cao Z, Shi F. Chem. Commun. 2017; 53: 10030
    • 8h Jin J.-H, Wang H, Yang Z.-T, Yang W.-L, Tang W, Deng W.-P. Org. Lett. 2018; 20: 104
    • 8i Wang C, Li Y, Wu Y, Wang Q, Shi W, Yuan C, Zhou L, Xiao Y, Guo H. Org. Lett. 2018; 20: 2880
    • 8j Zhao H.-W, Feng N.-N, Guo J.-M, Du J, Ding W.-Q, Wang L.-R, Song X.-Q. J. Org. Chem. 2018; 83: 9291
    • 8k Mun D, Kim E, Kim S.-G. Synthesis 2019; 51: 2359
    • 8l Sun M, Wan X, Zhou S.-J, Mei G.-J, Shi F. Chem. Commun. 2019; 55: 1283
    • 8m Suo J.-J, Du J, Jiang Y.-J, Chen D, Ding C.-H, Hou X.-L. Chin. Chem. Lett. 2019; 30: 1512
    • 8n Wang Y, Jia S, Li E.-Q, Duan Z. J. Org. Chem. 2019; 84: 15323
    • 8o Guo J.-M, Fan X.-Z, Wu H.-H, Tang Z, Bi X.-F, Zhang H, Cai L.-Y, Zhao H.-W, Zhong Q.-D. J. Org. Chem. 2021; 86: 1712
    • 8p Tucker ZD, Hill HM, Smith AL, Ashfeld BL. Org. Lett. 2020; 22: 6605
    • 8q Shao W, Xu-Xu Q.-F, You S.-L. Chem. Asian J. 2020; 15: 2462
    • 9a Wang C, Pahadi N, Tunge JA. Tetrahedron 2009; 65: 5102
    • 9b Uno H, Imai T, Harada K, Shibata N. ACS Catal. 2020; 10: 1454
    • 10a Qi Z, Kong L, Li X. Org. Lett. 2016; 18: 4392
    • 10b Tian H, Zhang P, Peng F, Yang H, Fu H. Org. Lett. 2017; 19: 3775
    • 10c Wang Y.-N, Wang B.-C, Zhang M.-M, Gao X.-W, Li T.-R, Lu L.-Q, Xiao W.-J. Org. Lett. 2017; 19: 4094
    • 10d Zhang J, Wang J.-Y, Huang M.-H, Hao W.-J, Tu X.-C, Tu S.-J, Jiang B. J. Org. Chem. 2020; 85: 7036
  • 11 Duan S, Cheng B, Duan X, Bao B, Li Y, Zhai H. Org. Lett. 2018; 20: 1417
    • 12a Lu L.-Q, Cao Y.-J, Liu X.-P, An J, Yao C.-J, Ming Z.-H, Xiao W.-J. J. Am. Chem. Soc. 2008; 130: 6946
    • 12b Lu L.-Q, Zhang J.-J, Li F, Cheng Y, An J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2010; 49: 4495
    • 12c Yang Q.-Q, Xiao C, Lu L.-Q, An J, Tan F, Li B.-J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 9137
    • 12d Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Rev. 2015; 115: 5301
    • 12e Kramer S, Fu GC. J. Am. Chem. Soc. 2015; 137: 3803
    • 12f Zhu C, Ding Y, Ye L.-W. Org. Biomol. Chem. 2015; 13: 2530
    • 12g Wang Q, Li T.-R, Lu L.-Q, Li M.-M, Zhang K, Xiao W.-J. J. Am. Chem. Soc. 2016; 138: 8360
    • 12h Liu Y.-Y, Yu X.-Y, Chen J.-R, Qiao M.-M, Qi X, Shi D.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2017; 56: 9527
    • 12i Zhou Y.-Y, Uyeda C. Science 2019; 363: 857
  • 13 Wang Q, Qi X, Lu L.-Q, Li T.-R, Yuan Z.-G, Zhang K, Li B.-J, Lan Y, Xiao W.-J. Angew. Chem. Int. Ed. 2016; 55: 2840
    • 14a Meng F.-X, Wang R.-N, Huang H.-L, Gong S.-W, Li Q.-L, Zhang S.-L, Ma C.-L, Li C.-Z, Du J.-Y. Org. Chem. Front. 2019; 6: 3929
    • 14b Du J.-Y, Ma Y.-H, Meng F.-X, Chen B.-L, Zhang S.-L, Li Q.-L, Gong S.-W, Wang D.-Q, Ma C.-L. Org. Lett. 2018; 20: 4371
    • 14c Du J.-Y, Ma Y.-H, Yuan R.-Q, Xin N, Nie S.-Z, Ma C.-L, Li C.-Z, Zhao C.-Q. Org. Lett. 2018; 20: 477
    • 14d Du J.-Y, Ma Y.-H, Meng F.-X, Zhang R.-R, Wang R.-N, Shi H.-L, Wang Q, Fan Y.-X, Huang H.-L, Cui J.-C, Ma C.-L. Org. Lett. 2019; 21: 465
    • 14e An X.-T, Du J.-Y, Jia Z.-L, Zhang Q, Yu K.-Y, Zhang Y.-Z, Zhao X.-H, Fang R, Fan C.-A. Chem. Eur. J. 2020; 26: 3803
  • 15 Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
    • 16a Suneja A, Schneider C. Org. Lett. 2018; 20: 7576
    • 16b Suneja A, Loui HJ, Schneider C. Angew. Chem. Int. Ed. 2020; 59: 5536
    • 16c Alamsetti SK, Spanka M, Schneider C. Angew. Chem. Int. Ed. 2016; 55: 2392