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Stroke remains the second leading cause of death anddisabili-
tyworldwide, calling for effective risk assessment and preven-
tion approaches that are needed to reduce the increasing
stroke burden.1 The established major stroke risk factors are
smoking, overweight/obesity, diet, dyslipidemia, diabetes
mellitus, hypertension, renal disease, coronary heart disease,
congestive cardiac failure, valvular heart disease, atrial fibril-
lation (AF), and vascular disease.2,3 An increasing cluster of
multiple cardiovascular risk factors contributes to evengreater
risks for ischemic stroke, especially in the elderly population.4

The more common and validated stroke risk factors have
been used to formulate clinical risk scores as risk stratification
tools using traditional statistical models. For example, the
Framingham 10-Year Risk Score,5 MyRisk_Stroke Calculator,6

andtheStrokeRiskometer7havebeendeveloped inpopulation-
based cohort studies, ranging from 3,000 to17,805 persons,
while the QStroke score was derived from 3.5 million primary
care population aged 25 to 84 years.8 There is a great heteroge-
neityof reportedperformance inpredicting 10-year stroke risk
of thesemodels, due to different risk profiles ofderived cohorts
and the limitation of traditional statistical models.

Given the multiple cardiovascular risk factors incorporat-
ed into these clinical risk scores, they are likely to be
increasinglymore complex to behandled in everyday clinical
practice. For example, there are 18 variables in QStroke score,
15 questions with a total 138 points in MyRisk_Stroke
Calculator, and 21 variables in Stroke Riskometer.6–8 Other
substantially simpler clinical scores, such as CHADS2 and
CHA2DS2-VASc scores, are commonly utilized for stroke risk
stratification in patients with AF and are easy enough to
calculate mentally in busy wards or clinics. Indeed, the
CHA2DS2-VASc score has been extensively utilized in some
national databases involving in up to 10 million individua-
ls.4,9–12 More complicated risk scores with many clinical

variables13 or the addition of biomarkers14–17 do not neces-
sarily mean improved prediction in the real world.

Nonetheless,manyof these scores are based on the impact
of a risk factor determined at baseline, and outcomes ascer-
tained many years later. Given that stroke risk is strongly
determined by aging and incident comorbidities, there is
uncertainty for predicting stroke risk among patients with
progressive multiple risk factors and comorbidities. Some
attempts to address the dynamic nature of risk have been
published.10,15,18 Also, there are some methodological lim-
itations about traditional clinical risk prediction models,
including unidentified clinical risk factors, unmeasured con-
founding, information bias, potential for bias due to missing
data, as well as limitation of variables input with traditional
statistical analysis itself. These would impact on the diag-
nostic accuracy of any risk stratification tool.

What are the possible options?With the surge in artificial
intelligence (AI) technology and machine learning (ML)-
based algorithms for predictive analytics, the development
of risk predictive models can move from traditional clinical
risk tools to a new era of smart technologies and digital
health (►Fig. 1).

In many cases, risk models based onML-based algorithms
have outperformed clinical risk factor assessment tools, in
some scenarios, including AF,19–23 with their powerful abili-
ty of dealing with far more multivariate variables, compared
with traditional statistical models (including logistic regres-
sion). However, ML-based algorithms seemly did not dem-
onstrate significant advantages over traditional clinical risk
models in other clinical settings.24,25

Although there is preliminary promise of AI technology
and ML-based algorithms in risk prediction, there are many
knowledge gaps. For example, the influencing factors on the
predictive ability of ML-based algorithms remain unclear.
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Which variables would be suitable for ML-based algorithms
—the extent towhich they would facilitate to predict the risk
—is possibly dependent on the factors that are used to train
the AI model. Moreover, the impact of different ML-learning
approaches is unclear, including supervised (decision tree
analysis, neural networks, extreme gradient boosting, or
XGBoost) and unsupervised ML algorithms (K-means
clustering, hierarchical clustering, etc.),26 on predicting
outcomes.

In this issue of Thrombosis and Haemostasis, Lip et al
report on stroke risk prediction, using two common clinical
rules (CHADS2, CHA2DS2-VASc scores), a clinical multimor-
bid index and a ML approach accounting for the complex
relationships among variables, using a prospective U.S. co-
hort of 3,435,224 patients frommedical databases.27 This is a
first large-scale investigation, with respect to the progressive
risk factors for stroke, the difference between traditional
statistical methods and ML-based algorithms in predicting
stroke risk, together with the comparison of different AI ML
approaches. The authors found that a clinical multimorbid
index had higher discriminant validity values than common
clinical rules, perhaps unsurprisingly given that more clinical
variables were used. The synergistic concomitant effects of
multiple stroke risk factors would contribute to “real-world”
and “real-time” stroke risk assessments, which changes over
timewith aging and incident comorbidities. Hence, the prima-
ry preventive or management strategy may focus not only on
“one”major disease, but also onmultiple risk factors to reduce
the individual stroke risk. This is a sound argument for a more
integrated or holistic care approach to characterization and
managing chronic cardiovascular conditions, includingAF.28,29

Indeed, the article by Lip et al also found that theML-based
algorithms yielded thehighest discriminant validity values for
the gradient boosting/neural network logistic regression for-
mulations, with no marked significant differences among the
ML approaches. Hence, the ML-based algorithms would be a
better alternative method other than “static” or “one-off”
evaluations by the traditional logistic regression model.30

Such an AI model could incorporate “dynamic” changing risk
factors to improve the risk prediction ability.

Beyond the improved risk prediction, the practicality of
usingML or AI models in everyday clinical practice should be
considered, balancing the complexity of collecting more
variables and simple clinical factors in the logistic model.
In addition, how ML-based algorithm approaches could be
transferred to effectively deliver stroke primary preventive
strategies requires further evaluation.

Innovative technologies, including AI, smartwear, and mo-
bile health technologies, make it possible to increase general
awareness about stroke and its risk factors as well as to
improve stroke prevention.7 The application of AI technology
facilitates stroke risk assessment and monitoring its progress
over time. It is expected that AI ML-based algorithms, com-
bined with other smart technologies, would improve holistic
primary stroke prevention, through individual risk profile-
oriented recommendations based on AI stroke risk monitor-
ing, incorporating educational programs and self-manage-
ment. The era of structured mHealth approaches to deliver
integrated carehas shownsignificant improvements in clinical
outcomes (especially hospitalization), with good long-term
adherence and persistence.31,32 Such innovations using ML
and AI approaches offer a new paradigm of “real-time” stroke

Fig. 1 The new landscape of stroke prevention with AI ML algorithms in the digital health era, incorporating innovations using machine learning
and artificial intelligence approaches. AI, artificial intelligence; ML, machine learning.
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risk prediction and integrated care management in the digital
health era (►Fig. 1).
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