Synthesis 2021; 53(18): 3151-3179
DOI: 10.1055/a-1485-4666
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Transition-Metal-Catalyzed C–H Arylation Using Organoboron Reagents

Sumon Basak
a   Department of Chemistry, Banaras Hindu University, Varanasi, UP 221005, India
,
Jyoti Prasad Biswas
b   Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
,
Debabrata Maiti
b   Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
› Author Affiliations
This activity is supported by Science and Engineering Research Board (SERB), India (CRG/2018/003915). Financial support has been received from Council of Scientific and Industrial Research, India (CSIR-India) by J.P.B.


Abstract

Aryl rings are ubiquitous in the core of numerous natural product and industrially important molecules and thus their facile synthesis is of major interest in the scientific community and industry. Although multiple strategies enable access to these skeletons, metal-catalyzed C–H activation is promising due to its remarkable efficiency. Commercially available organoboron reagents, a prominent arylating partner in the cross-coupling domain, have also been utilized for direct arylation. Organoborons are bench-stable, inexpensive, and readily available coupling partners that promise regioselectivity, chemodivergence, cost-efficiency, and atom-economy without requiring harsh and forcing conditions. This critical, short review presents a summary of all major studies of arylation using organoborons in transition-metal catalysis since 2005.

1 Introduction

2 Arylation without Directing Group Assistance

2.1 Palladium Catalysis

2.2 Iron Catalysis

2.3 Gold Catalysis

3 Arylation with Directing Group Assistance

3.1 Palladium Catalysis

3.2 Ruthenium Catalysis

3.3 Rhodium Catalysis

3.4 Nickel Catalysis

3.5 Cobalt Catalysis

3.6 Copper Catalysis

4 Conclusion



Publication History

Received: 15 March 2021

Accepted after revision: 19 April 2021

Accepted Manuscript online:
19 April 2021

Article published online:
02 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 He J, Hamann LG, Davies HM. L, Beckwith RE. J. Nat. Commun. 2015; 6: 1
  • 2 Marques CS, Burke AJ. ChemCatChem 2011; 3: 635
  • 3 Caro-Diaz EJ. E, Urbano M, Buzard DJ, Jones RM. Bioorg. Med. Chem. Lett. 2016; 26: 5378
  • 4 Stepek IA, Itami K. ACS Mater. Lett. 2020; 2: 951
    • 5a Labinger JA, Bercaw JE. Nature 2002; 417: 507

    • Alkylarene synthesis by C−H activation, see reviews:
    • 5b Das J, Guin S, Maiti D. Chem. Sci. 2020; 11: 10887
    • 5c He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 5d Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
    • 6a Crabtree RH. J. Organomet. Chem. 2004; 689: 4083

    • Alkenyl­arene synthesis by C−H activation, see reviews:
    • 6b Ali W, Prakash G, Maiti D. Chem. Sci. 2021; 12: 2735
    • 6c Deb A, Maiti D. Eur. J. Org. Chem. 2017; 1239
    • 7a Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242

    • Biaryl synthesis by C−H activation, see reviews:
    • 7b Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
    • 7c Felpin F.-X, Sengupta S. Chem. Soc. Rev. 2019; 48: 1150
    • 7d Hussain I, Singh T. Adv. Synth. Catal. 2014; 356: 1661
    • 7e Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
  • 8 Ge H, Niphakis MJ, Georg GI. J. Am. Chem. Soc. 2008; 130: 3708
    • 9a Hall DG. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine, 1st ed. Hall DG. Wiley-VCH; Weinheim: 2006
    • 9b Marques CS, Dindaroglu M, Schmalz HG, Burke AJ. RSC Adv. 2014; 4: 6035
    • 9c Ramar T, Ramar T, Subbaiah MA. M, Ilangovan A. J. Org. Chem. 2020; 85: 7711
    • 9d Lei C, Yip YJ, Zhou JS. J. Am. Chem. Soc. 2017; 139: 6086
  • 10 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 11 Hartwig JF. Acc. Chem. Res. 2012; 45: 864
  • 12 Vedejs E, Chapman RW, Fields SC, Lin S, Schrimpf MR. J. Org. Chem. 1995; 60: 3020
  • 13 Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
  • 14 Yang S.-D, Sun C.-L, Fang Z, Li B.-J, Li Y.-Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
  • 15 Zhao J, Zhang Y, Cheng K. J. Org. Chem. 2008; 73: 7428
  • 16 Wei Y, Kan J, Wang M, Su W, Hong M. Org. Lett. 2009; 11: 3346
  • 17 Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2009; 48: 4235
  • 18 Liu B, Qin X, Li K, Li X, Guo Q, Lan J, You J. Chem. Eur. J. 2010; 16: 11836
  • 19 Mochida K, Kawasumi K, Segawa Y, Itami K. J. Am. Chem. Soc. 2011; 133: 10716
  • 20 Yamaguchi K, Yamaguchi J, Studer A, Itami K. Chem. Sci. 2012; 3: 2165
  • 21 Yamaguchi K, Kondo H, Yamaguchi J, Itami K. Chem. Sci. 2013; 4: 3753
  • 22 Kirchberg S, Tani S, Ueda K, Yamaguchi J, Studer A, Itami K. Angew. Chem. Int. Ed. 2011; 50: 2387
  • 23 Ranjit S, Liu X. Chem. Eur. J. 2011; 17: 1105
  • 24 Kim YW, Niphakis MJ, Georg GI. J. Org. Chem. 2012; 77: 9496
  • 25 Schnapperelle I, Breitenlechner S, Bach T. Org. Lett. 2011; 13: 3640
  • 26 Schnapperelle I, Bach T. ChemCatChem 2013; 5: 3232
  • 27 Carrër A, Brion JD, Messaoudi S, Alami M. Org. Lett. 2013; 15: 5606
  • 28 Kim YW, Georg GI. Org. Lett. 2014; 16: 1574
  • 29 Deb A, Manna S, Maji A, Dutta U, Maiti D. Eur. J. Org. Chem. 2013; 5251
  • 30 Hofer M, Genoux A, Kumar R, Nevado C. Angew. Chem. Int. Ed. 2017; 56: 1021
  • 31 Shi Z, Li B, Wan X, Cheng J, Fang Z, Cao B, Qin C, Wang Y. Angew. Chem. Int. Ed. 2007; 46: 5554
  • 32 Giri R, Maugel N, Li J.-J, Wang D.-H, Breazzano SP, Saunders LB, Yu J.-Q. J. Am. Chem. Soc. 2007; 129: 3510
  • 33 Wang DH, Wasa M, Giri R, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 7190
  • 34 Wang D, Mei T, Yu J. J. Am. Chem. Soc. 2008; 130: 17676
  • 35 Chu J.-H, Chen C.-C, Wu M.-J. Organometallics 2008; 27: 5173
  • 36 Kirchberg S, Vogler T, Studer A. Synlett 2008; 2841
  • 37 Nishikata T, Abela AR, Huang S, Lipshutz BH. J. Am. Chem. Soc. 2010; 132: 4978
  • 38 Wasa M, Chan KS. L, Yu J.-Q. Chem. Lett. 2011; 40: 1004
  • 39 Tredwell MJ, Gulias M, Gaunt Bremeyer N, Johansson CC. C, Collins BS. L, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 1076
  • 40 Engle KM, Thuy-Boun PS, Dang M, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 18183
  • 41 Wasa M, Engle KM, Lin DW, Yoo EJ, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 19598
  • 42 Romero-Revilla JA, García-Rubia A, Goméz Arrayás R, Fernández-Ibáñez M. Á, Carretero JC. J. Org. Chem. 2011; 76: 9525
  • 43 Gao D.-W, Shi Y.-C, Gu Q, Zhao Z.-L, You S.-L. J. Am. Chem. Soc. 2013; 135: 86
  • 44 Chan KS. L, Wasa M, Chu L, Laforteza BN, Miura M, Yu J.-Q. Nat. Chem. 2014; 6: 146
  • 45 Xiao K.-J, Lin DW, Miura M, Zhu R.-Y, Gong W, Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 8138
  • 46 Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140
  • 47 Cai Z.-J, Liu C.-X, Gu Q, You S.-L. Angew. Chem. Int. Ed. 2017; 57: 1296
  • 48 Reddy DM, Wang S.-C, Du K, Lee C.-F. J. Org. Chem. 2017; 82: 10070
  • 49 Yu R, Li D, Zeng F. J. Org. Chem. 2018; 83: 323
  • 50 Plevová K, Mudráková B, Rakovský E, Šebesta R. J. Org. Chem. 2019; 84: 7312
  • 51 Li H, Wei W, Xu Y, Wan X, Wan X. Chem. Commun. 2011; 47: 1497
  • 52 Kakiuchi F, Matsuura Y, Kan S, Chatani N. J. Am. Chem. Soc. 2005; 127: 5936
  • 53 Kakiuchi F, Kan S, Igi K, Chatani N, Murai S. J. Am. Chem. Soc. 2003; 125: 1698
  • 54 Kitazawa K, Kotani M, Kochi T, Langeloth M, Kakiuchi F. J. Organomet. Chem. 2010; 695: 1163
  • 55 Kitazawa K, Kochi T, Sato M, Kakiuchi F. Org. Lett. 2009; 11: 1951
  • 56 Dastbaravardeh N, Schnürch M, Mihovilovic MD. Org. Lett. 2012; 14: 1930
  • 57 Koseki Y, Kitazawa K, Miyake M, Kochi T, Kakiuchi F. J. Org. Chem. 2017; 82: 6503
  • 58 Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
  • 59 Chinnagolla RK, Jeganmohan M. Org. Lett. 2012; 14: 5246
  • 60 Chinnagolla RK, Jeganmohan M. Chem. Commun. 2014; 50: 2442
  • 61 Hubrich J, Himmler T, Rodefeld L, Ackermann L. Adv. Synth. Catal. 2015; 357: 474
  • 62 Zhao Y, Snieckus V. Adv. Synth. Catal. 2014; 356: 1527
  • 63 Reddy GM, Siva Rao NS, Satyanarayana P, Maheswaran H. RSC Adv. 2015; 5: 105347
  • 64 Sollert C, Devaraj K, Orthaber A, Gates PJ, Pilarski LT. Chem. Eur. J. 2015; 21: 5380
  • 65 Nareddy P, Jordan F, Brenner-Moyer SE, Szostak M. ACS Catal. 2016; 6: 4755
  • 66 Siopa F, Ramis Cladera VA, Afonso CA. M, Oble J, Poli G. Eur. J. Org. Chem. 2018; 6101
  • 67 Kim J, Kim S, Kim D, Chang S. J. Org. Chem. 2019; 84: 13150
  • 68 Yuan Y.-C, Bruneau C, Roisnel T, Gramage-Doria R. J. Org. Chem. 2019; 84: 12893
  • 69 Parmar D, Kumar R, Kumar R, Sharma U. J. Org. Chem. 2020; 85: 11844
  • 70 Vogler T, Studer A. Org. Lett. 2008; 10: 129
  • 71 Miyamura S, Tsurugi H, Satoh T, Miura M. J. Organomet. Chem. 2008; 693: 2438
  • 72 Karthikeyan J, Haridharan R, Cheng C.-H. Angew. Chem. Int. Ed. 2012; 51: 12343
  • 73 Zheng J, Zhang Y, Cui S. Org. Lett. 2014; 16: 3560
  • 74 Wang H.-W, Cui P.-P, Lu Y, Sun W.-Y, Yu J.-Q. J. Org. Chem. 2016; 81: 3416
  • 75 Zhang B, Wang H.-W, Kang Y.-S, Zhang P, Xu H.-J, Lu Y, Sun W.-Y. Org. Lett. 2017; 19: 5940
  • 76 Liu B, Zhang Z.-Z, Li X, Shi B.-F. Org. Chem. Front. 2016; 3: 897
  • 77 De PB, Pradhan S, Banerjee S, Punniyamurthy T. Chem. Commun. 2018; 54: 2494
  • 78 Shang M, Sun S.-Z, Dai H.-X, Yu J.-Q. Org. Lett. 2014; 16: 5666

    • For reviews on metal-mediated arylation, see:
    • 79a Gui Q, Chen X, Hu L, Wang D, Liu J, Tan Z. Adv. Synth. Catal. 2016; 358: 509
    • 79b Hu L, Gui Q, Chen X, Tan Z, Zhu G. Org. Biomol. Chem. 2016; 14: 11070
    • 79c Wang J, Wang S, Wang G, Zhang J, Yu X.-Q. Chem. Commun. 2012; 48: 11769
    • 79d Wen J, Qin S, Ma L.-F, Dong L, Zhang J, Liu S.-S, Duan Y.-S, Chen S.-Y, Hu C.-W, Yu X.-Q. Org. Lett. 2010; 12: 2694
    • 79e Ban I, Sudo T, Taniguchi T, Itami K. Org. Lett. 2008; 10: 3607