Synlett 2021; 32(11): 1104-1108
DOI: 10.1055/a-1479-5008
letter

Sodium Aminodiboranate, a New Reagent for Chemoselective Reduction of Aldehydes and Ketones to Alcohols

Jin Wang
a   School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, P. R. of China
b   College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, P. R. of China
,
Yu Guo
a   School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, P. R. of China
,
Shouhu Li
a   School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, P. R. of China
,
Xuenian Chen
a   School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, P. R. of China
c   Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. of China
› Author Affiliations
This work is financially supported by the National Natural Science Foundation of China (Grant Numbers 21771057 and U1804253).


Abstract

Sodium aminodiboranate (NaNH2(BH3)2, NaADBH) is a new member of the old borane family, which exhibits superior performance in chemoselective reduction. Experimental results show that NaADBH can rapidly reduce aldehydes and ketones to the corresponding alcohols in high efficiency and selectivity under mild conditions. There are little steric and electronic effects on this reduction.

Supporting Information



Publication History

Received: 17 March 2021

Accepted after revision: 10 April 2021

Accepted Manuscript online:
10 April 2021

Article published online:
06 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Brown HC, Ramachandra PV. Reductions in Organic Synthesis. American Chemical Society; Washington, DC: 1996. Chap. 1, 1-30
    • 1b Lane CF. Chem. Rev. 1976; 76: 773
    • 1c Burkhardt ER, Mato K. Chem. Rev. 2006; 106: 2617
  • 2 Braun LM, Braun RA, Crissman HR, Opprman M, Adams RM. J. Org. Chem. 1971; 36: 2388
    • 3a Schlesinger HI, Brown HC, Hockstra HR, Rapp LR. J. Am. Chem. Soc. 1953; 75: 199
    • 3b Kim J, De Castro KA, Lim M, Rhee H. Tetrahedron 2010; 66: 3995
    • 4a Nystrom RF, Chaikin SW, Brown WG. J. Am. Chem. Soc. 1949; 71: 3245
    • 4b Huang FC, Lee LF. H, Mittal RS. D, Ravikumar PR, Chan JA, Sih CJ. J. Am. Chem. Soc. 1975; 97: 4144
    • 5a Khezri B, Ghadimi FN, Karashi CN, Setamdideh D. Orient. J. Chem. 2013; 29: 623
    • 5b Setamdideh D, Khezri B, Rahmatollahzadeh M. J. Serb. Chem. Soc. 2013; 78: 1
    • 5c Setamdideh D, Rafigh ME.-J. Chem. 2012; 9: 2338
    • 6a Blaser H, Malan C, Pugin B, Spindler F, Steiner H, Studer M. Adv. Synth. Catal. 2003; 345: 103
    • 6b Cha JS. Bull. Korean Chem. Soc. 2007; 28: 2162
    • 6c Cha JS. Bull. Korean Chem. Soc. 2011; 32: 1808
    • 6d Gemal AL, Luche JL. J. Am. Chem. Soc. 1981; 103: 5454
    • 6e Luche JL. J. Am. Chem. Soc. 1978; 100: 2226
    • 6f Heydari A, Arefi A, Esfandyari M. J. Mol. Catal. A: Chem. 2007; 274: 169
    • 6g Fuller J, Williamson S, Singaram B. J. Fluorine Chem. 1994; 68: 265
    • 6h Heydari A, Khaksar S, Akbari J, Esfandyari M, Pourayoubi M, Tajbakhsh M. Tetrahedron Lett. 2007; 48: 1135
    • 7a Koren-Selfridge L, Londino HN, Vellucci JK, Simmons BJ, Casey CP, Clark TB. Organometallics 2009; 28: 2085
    • 7b Chong CC, Hirao H, Kinjo R. Angew. Chem. Int. Ed. 2015; 54: 190
    • 7c Eedugurala N, Wang Z, Chaudhary U, Nelson N, Kandel K, Kobayashi T, Slowing II, Pruski M, Sadow AD. ACS Catal. 2015; 5: 7399
    • 7d Manna K, Ji P, Greene FX, Lin W. J. Am. Chem. Soc. 2016; 138: 7488
    • 8a Chen X, Zhao J.-C, Shore GS. Acc. Chem. Res. 2013; 46: 2666
    • 8b Chen X.-M, Wang J, Liu S.-C, Zhang J, Wei D, Chen X. Dalton Trans. 2019; 48: 14984
    • 8c Li H, Ma N, Meng W, Gallucci J, Qiu Y, Li S, Zhao Q, Zhang J, Zhao J.-C, Chen X. J. Am. Chem. Soc. 2015; 137: 12406
    • 8d Zhao Q, Dewhurst RD, Braunschweig H, Chen X. Angew. Chem. Int. Ed. 2019; 58: 3268
    • 8e Chen X.-M, Ma N, Liu X.-R, Wei C, Cui C.-C, Cao B.-L, Guo Y, Wang L.-S, Gu Q, Chen X. Angew. Chem. Int. Ed. 2019; 58: 2720
    • 8f Li H, Wang R, Xia Q, Yang Q, Wang P, Wei C, Ma N, Chen X. Chem. Res. 2018; 29: 118
    • 8g Chen X.-M, Li H, Yang Q.-Y, Wang R.-R, Hamilton EJ. M, Zhang J, Chen X. Eur. J. Inorg. Chem. 2017; 4541
    • 8h Chen X.-M, Liu S.-C, Xu C.-Q, Jing Y, Wei D, Li J, Chen X. Chem. Commun. 2019; 55: 12239
    • 8i Chen X.-M, Ma N, Zhang Q.-F, Wang J, Feng X, Wei C, Wang L.-S, Zhang J, Chen X. J. Am. Chem. Soc. 2018; 140: 6718
  • 9 Faverio C, Boselli MF, Medici F, Benaglia M. Org. Biomol. Chem. 2020; 18: 7789
    • 10a Andrews GC. Tetrahedron Lett. 1980; 21: 697
    • 10b Andrews GC, Crawford TC. Tetrahedron Lett. 1980; 21: 693
    • 10c Allwood BL, Shahriarizavareh H, Stoddart JF, Williams DJ. J. Chem. Soc., Chem. Commun. 1984; 1461
    • 10d Shi L, Liu Y, Liu Q, Wei B, Zhang G. Green Chem. 2012; 14: 1372
    • 10e Yang X, Fox T, Berke H. Tetrahedron 2011; 67: 7121
    • 11a Xu W, Wang R, Wu G, Chen P. RSC Adv. 2012; 2: 6005
    • 11b Xu W, Zhou Y, Wang R, Wu G, Chen P. Org. Biomol. Chem. 2012; 10: 367
    • 11c Xu W, Wu G, Yao W, Fan H, Wu J, Chen P. Chem. Eur. J. 2012; 18: 13885
    • 11d Xu W, Fan H, Wu G, Chen P. New J. Chem. 2012; 36: 1496
  • 12 Wiberg E. Ber. Dtsch. Chem. Ges. A 1936; 69: 2816
    • 13a Schlesinger HJ, Burg AB. J. Am. Chem. Soc. 1938; 60: 290
    • 13b Daly SR, Bellott BJ, Kim DY, Giromali GS. J. Am. Chem. Soc. 2010; 132: 7254
  • 14 Chen W, Huang Z, Wu G, Chen P. Sci. China: Chem. 2015; 58: 169
  • 15 Wang J, Ju M.-Y, Wang X, Ma Y.-N, Wei D, Chen X. J. Org. Chem. 2021; 86: 5305
  • 16 Typical Experimental Procedure A solution of NaADBH (1 mmol, 1.0 equiv) in THF (5 mL) was added into the solution of benzaldehyde (3.0 mmol, 3.0 equiv) in THF (5 mL) at room temperature under air atmosphere. The progress of the reaction was monitored by TLC. Upon completion, the hydrolysis of borate esters was carried out by addition of excess water, forming the corresponding alcohols and trimethylborate. The reaction mixture was extracted with EtOAc (3 × 20 mL) and CH2Cl2 (3 × 20 mL). The combined organic extracts were dried over anhydrous Na2SO4 and concentrated by rotary evaporation. The residue was purified by silica gel column chromatography to obtain the product 1a as a colorless liquid (301 mg, 2.79 mmol, 93%). 1H NMR (600 MHz, CDCl3): δ = 7.26–7.20 (m, 2 H), 7.20–7.14 (m, 3 H), 4.40 (s, 2 H), 4.04 (s, 1 H). 13C NMR (151 MHz, CDCl3): δ = 140.9, 128.6, 127.7, 127.1, 65.3.
  • 17 Yoon NM, Pak CS, Brown HC, Krishnamurthy S, Stocky TP. J. Org. Chem. 1973; 38: 2786
  • 18 Subba Rao BC, Thakar GP. Curr. Sci. 1963; 32: 404
  • 19 Daly SR, Bellott BJ, Kim DY, Girolami GS. J. Am. Chem. Soc. 2010; 132: 7254