Synlett 2021; 32(10): 1044-1048
DOI: 10.1055/a-1473-7369
letter

Diiiodine/Potassium Persulfate Mediated Synthesis of 1,2,3-Thiadiazoles from N-Tosylhydrazones and a Thiocyanate Salt as a Sulfur Source under Transition-Metal-Free Conditions

Yuhan Lu
b   The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R. of China
,
Yadong Sun
a   College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, P. R. of China
b   The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R. of China
,
Ablimit Abdukader
b   The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R. of China
,
Chenjiang Liu
b   The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R. of China
› Author Affiliations
We are grateful for financial support from the Xinjiang Natural Science Foundation (2020D01C024), the National Natural Science Foundation of China (21662032, 21562039, and 22061040), and the startup funds of Quzhou University (BSYJ202108).


Abstract

A highly efficient method for the synthesis of 1,2,3-thiadiazoles has been developed by utilizing readily available tosylhydrazones and ammonium thiocyanate with ecofriendly EtOH as the solvent at room temperature. The reaction shows a wide scope of substrates and good functional-group tolerance. This protocol can be scaled up to a gram level and can be applied to coupling reactions with 4-(4-bromophenyl)-1,2,3-thiadiazole as the substrate.

Supporting Information



Publication History

Received: 05 February 2021

Accepted after revision: 03 April 2021

Accepted Manuscript online:
03 April 2021

Article published online:
23 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Amirhamzeh A, Vosoughi M, Shafiee A, Amini M. Med. Chem. Res. 2013; 22: 1212
    • 1b Cikotiene I, Kazlauskas E, Matuliene J, Michailoviene V, Torresan J, Jachno J, Matulis D. Bioorg. Med. Chem. Lett. 2009; 19: 1089
    • 1c Zheng Q, Mi N, Fan Z, Zuo X, Zhang H, Wang H, Yang Z. J. Agric. Food Chem. 2010; 58: 7846
    • 1d Atta SM. S, Farrag DS, Sweed AM. K, Abdel-Rahman AH. Eur. J. Med. Chem. 2010; 45: 4920
    • 1e Wu M, Sun Q, Yang C, Chen D, Ding J, Chen Y, Lin L, Xie Y. Bioorg. Med. Chem. Lett. 2007; 17: 869
    • 1f Dai H, Ge S, Li G, Chen J, Shi Y, Ye L, Ling Y. Bioorg. Med. Chem. Lett. 2016; 26: 4504
    • 1g Zhan P, Liu X, Cao Y, Wang Y, Pannecouque C, De Clercq E. Bioorg. Med. Chem. Lett. 2008; 18: 5368
    • 1h Giray B, Karadağ AE, İpek Ö. Ş, Pekel H, Güzel M, Küçük HB. Bioorg. Chem. 2020; 95: 103509
    • 1i Zhan P, Liu X, Li Z, Fang Z, Li Z, Wang D, Pannecouque C, De Clercq E. Bioorg. Med. Chem. 2009; 17: 5920
    • 1j Dong W.-L, Liu Z.-X, Liu X.-H, Li Z.-M, Zhao W.-G. Eur. J. Med. Chem. 2010; 45: 1919
    • 2a Du Q, Zhu W, Zhao Z, Qian X, Xu Y. J. Agric. Food Chem. 2012; 60: 346
    • 2b Xu Y, Zhao Z, Qian X, Qian Z, Tian W, Zhong J. J. Agric. Food Chem. 2006; 54: 8793
    • 2c Wang Z.-H, Guo Y.-Z, Zhang J, Ma L, Song H.-B, Fan Z.-J. J. Agric. Food Chem. 2010; 58: 2715
    • 2d Zuo X, Mi N, Fan Z, Zheng Q, Zhang H, Wang H, Yang Z. J. Agric. Food Chem. 2010; 58: 2755
    • 2e Jiang H, Wang Y, Li C, Wang B, Ma L, Ren Y, Bi Y, Li Y, Xue H, Prusky D. Food Chem. 2020; 309: 125608
  • 3 Androsov DA. J. Org. Chem. 2008; 73: 8612
  • 4 Caron M. J. Org. Chem. 1986; 51: 4075
    • 5a Hurd CD, Mori RI. J. Am. Chem. Soc. 1955; 77: 5359
    • 5b Hu Y, Baudart S, Porco JA. J. Org. Chem. 1999; 64: 1049
    • 5c Butler RN, O’Donoghue DA. J. Chem. Soc., Perkin Trans. 1 1982; 1223
    • 5d Attanasi OA, Baccolini G, Boga C, De Crescentini L, Filippone P, Mantellini F. J. Org. Chem. 2005; 70: 4033
    • 5e Kumar A, Muthyala MK, Choudhary S, Tiwari RK, Parang K. J. Org. Chem. 2012; 77: 9391
    • 6a Sheehan JC, Izzo PT. J. Am. Chem. Soc. 1949; 71: 4059
    • 6b von Pechmann H, Nold A. Chem. Ber. 1896; 29: 2588
  • 7 Aoyama T, Iwamoto Y, Shioiri T. Heterocycles 1986; 24: 589
    • 8a Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
    • 8b Qiu D, Mo F, Zhang Y, Wang J. Adv. Organomet. Chem. 2017; 67: 151
    • 8c Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 8d Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
    • 8e Barluenga J, Tomás-Gamasa M, Moriel P, Aznar F, Valdés C. Chem. Eur. J. 2008; 14: 4792
    • 8f Barluenga J, Moriel P, Valdés C, Aznar F. Angew. Chem. Int. Ed. 2007; 46: 5587
    • 8g Jiang H, He L, Li X, Chen H, Wu W, Fu W. Chem. Commun. 2013; 49: 9218
    • 8h Zhou L, Ye F, Zhang Y, Wang J. J. Am. Chem. Soc. 2010; 132: 13590
    • 8i Chen Z, Yan Q, Liu Z, Xu Y, Zhang Y. Angew. Chem. Int. Ed. 2013; 52: 13324
    • 9a Xia Y, Xia Y, Zhang Y, Wang J. Org. Biomol. Chem. 2014; 12: 9333
    • 9b Wang C.-Y, Han J.-B, Wang L, Tang X.-Y. J. Org. Chem. 2019; 84: 14258
    • 9c Xiong W, Qi C, He H, Ouyang L, Zhang M, Jiang H. Angew. Chem. 2015; 127: 3127
    • 9d Sun S, Yu J.-T, Jiang Y, Cheng J. J. Org. Chem. 2015; 80: 2855
    • 9e Chen L.-M, Zhao J, Xia A.-J, Guo X.-Q, Gan Y, Zhou C, Yang Z.-J, Yang J, Kang T.-R. Org. Biomol. Chem. 2019; 17: 8561
    • 9f Liu Z, Wu P, He Y, Yang T, Yu Z. Adv. Synth. Catal. 2018; 360: 4381
    • 9g Liu Z, Wang L, Tan H, Zhou S, Fu T, Xia Y, Zhang Y, Wang J. Chem. Commun. 2014; 50: 5061
  • 10 Chen J, Jiang Y, Yu J.-T, Cheng J. J. Org. Chem. 2016; 81: 271
  • 11 Mo S.-K, Teng Q.-H, Pan Y.-M, Tang H.-T. Adv. Synth. Catal. 2019; 361: 1756
  • 12 Ishikawa T, Kimura M, Kumoi T, Iida H. ACS Catal. 2017; 7: 4986
  • 13 Wang C, Geng X, Zhao P, Zhou Y, Wu Y.-D, Cui Y.-F, Wu A.-X. Chem. Commun. 2019; 55: 8134
    • 14a Sun Y, Abdukader A, Lu D, Zhang H, Liu C. Green Chem. 2017; 19: 1255
    • 14b Li X, He L, Chen H, Wu W, Jiang H. J. Org. Chem. 2013; 78: 3636
    • 14c Sun Y, Abdukader A, Zhang H, Yang W, Liu C. RSC Adv. 2017; 7: 55786
    • 14d Wang S, Wang K, Kong X, Zhang S, Jiang G, Ji F. Adv. Synth. Catal. 2019; 361: 3986
    • 15a Chen Z, Yan Q, Liu Z, Zhang Y. Chem. Eur. J. 2014; 20: 17635
    • 15b Gao Q, Liu S, Wu X, Zhang J, Wu A. J. Org. Chem. 2015; 80: 5984
    • 15c Wan J.-P, Cao S, Liu Y. J. Org. Chem. 2015; 80: 9028
    • 15d Cai Z.-J, Lu X.-M, Zi Y, Yang C, Shen L.-J, Li J, Wang S.-Y, Ji S.-J. Org. Lett. 2014; 16: 5108
    • 15e Sun K, Li Y, Feng R, Mu S, Wang X, Zhang B. J. Org. Chem. 2020; 85: 1001
  • 16 4-Phenyl-1,2,3-thiadiazole (3a);4 Typical Procedure
    CAUTION:
    Toxic HCN gas might be formed as a byproduct of this reaction. A mixture of N-tosylhydrazone (1a) (72 mg, 0.25 mmol), NH4SCN (2) (1.0 equiv), I2 (63.5 mg, 0.25 mmol), and K2S4O8 (1.0 equiv) in anhyd EtOH (2.0 mL) was placed in a sealed tube. Test tube (25 mL) equipped with a magnetic stirrer bar, and the mixture was stirred at r.t. for 12 h. The reaction was then quenched with sat. aq Na2S2O3 (5 mL) and, after further stirring, the mixture was extracted with EtOAc (3 × 10 mL). The organic layer was dried (MgSO4), concentrated in vacuo, and purified by flash chromatography [silica gel, PE–EtOAc (8:1)] to give a white solid; yield: 35.5 mg (87%); mp 75–77 °C. 1H NMR (400 MHz, CDCl3): δ = 8.65 (s, 1 H), 8.05 (d, J = 6.8 Hz, 2 H), 7.54–7.43 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 162.8, 130.8, 129.9, 129.4, 129.1, 127.4.