The bizarre appearance of intrathoracic extramedullary hematopoiesis during an endoscopic ultrasound examination

A 61-year-old man was referred for evaluation of bilateral, intrathoracic, paravertebral masses suspicious for malignancy (▶ Fig. 1a,b). The lesions had been incidentally detected in the thoracic slices of an abdominal computed tomography (CT) performed to investigate suspected kidney stones. The patient had no thoracic complaints and had an unremarkable past medical history. Given the proximity to the esophagus, an endoscopic ultrasound (EUS) with bronchoscope was performed to rule out lung cancer. It showed the right-sided lesion as a 5.5-cm, heterogeneous mass characterized by the bizarre alternation of thick linear hyper-echoic and iso-hypoechoic areas (“zebra-like” appearance) (▶ Video 1). Several passes with a 22-gauge needle were performed without any complication, and the pathologic examination of both tissue cores and smears led to the diagnosis of an intrathoracic extramedullary hematopoiesis (▶ Fig. 2a,b). Hematologic laboratory tests were performed and an underlying beta thalassemia minor was finally diagnosed.

Extramedullary hematopoiesis typically occurs as a compensatory mechanism, most frequently in the liver and spleen, in patients with hematologic disorders leading to deficient bone marrow function [1]. Paravertebral extramedullary hematopoiesis, either intrathoracic or retroperitoneal, is uncommon and is usually diagnosed with percutaneous CT-guided needle aspiration/biopsy [2]. However, the increasing use of EUS or EUS with bronroscope for the diagnosis of suspected paraesophageal lung cancer may seldom incidentally diagnose intrathoracic extramedullary hematopoiesis [3, 4]. In a review of the literature, we identified a single case in which still EUS images of a paraesophageal, supra-diaphragmatic extramedullary hematopoiesis were provided [5]. The bizarre B-mode “zebra-like” appearance of extramedullary hematopoiesis, thoroughly demonstrated in our video, might help the operator reliably suspect it in the correct clinical and radiological setting.

Endoscopy_UCTN_Code_CCL_1AF_2AC

Competing interests

The authors declare that they have no conflict of interest.
The authors

Rocco Trisolini1, Alberto Larghi2, Vanina Livi3, Daniela Paioli3, Alessandra Cancellieri4
1 Interventional Pulmonology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
2 Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
3 Interventional Pulmonology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
4 Pathology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy

Corresponding author

Rocco Trisolini, MD
Interventional Pulmonology Unit, Fondazione Policlinico A. Gemelli, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
rocco.trisolini@policlinicogemelli.it

References


Bibliography

Endoscopy
DOI 10.1055/a-1463-2527
ISSN 0013-726X
published online 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is a free access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online.

This section has its own submission website at
https://mc.manuscriptcentral.com/e-videos

Fig. 2 Pathological examination of specimens from bronchoscopic ultrasound-guided fine-needle aspiration. Some multinucleated megakaryocytes (green arrows) and rare myeloid elements (red arrow) are evident amidst lymphoid tissue. a As seen in tissue cores. b As seen in smears.