Synlett 2021; 32(10): 993-998
DOI: 10.1055/a-1458-5785
letter

Visible-Light Photoredox-Catalyzed Decarboxylative α-tert-Butylation of C(sp3)–H Bonds of N-Aryltetrahydroisoquinolines with Pivalic Acid under Transition-Metal-Free Conditions

Li Sun
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
,
Yicheng Zhang
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
,
Jie Liu
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
,
Pinhua Li
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
b   Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China
› Author Affiliations
We gratefully acknowledge financial support from the National Natural Science Foundation of China (21901081), the Young Talent Key Project of Anhui Province (170808J02), the Natural Science Foundation of Anhui Province (2008085QB90), and the Project of Anhui Provincial Education Department (KJ2015TD002).


Abstract

A transition-metal-free visible-light photoredox-catalyzed decarboxylative alkylation of the benzylic C(sp3)–H bonds of N-aryltetrahydroisoquinolines is reported. The method tolerates various functional groups and proceeds smoothly without requiring a stoichiometric oxidant. A preliminary mechanistic study indicated that a radical process is involved in the reaction.

Supporting Information



Publication History

Received: 21 February 2021

Accepted after revision: 22 March 2021

Accepted Manuscript online:
22 March 2021

Article published online:
12 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Huang L, Cao D, Pan J, Fang L, Wang Q, Chen D, Yang J. Adv. Synth. Catal. 2020; 362: 5653
    • 2b Zhao H, Xu X, Luo Z, Cao L, Li B, Li H, Xu L, Fan Q, Walsh PJ. Chem. Sci. 2019; 10: 10089
    • 2c Cheng Y, Li G, Liu Y, Shi Y, Gao G, Wu D, Lan J, You J. J. Am. Chem. Soc. 2016; 138: 4730
    • 2d Liang X.-A, Niu L, Wang S, Liu J, Lei A. Org. Lett. 2019; 21: 2441
    • 2e Zhang W, Xiang X.-X, Chen J, Yang C, Pan Y.-L, Cheng J.-P, Meng Q, Li X. Nat. Commun. 2020; 11: 638
    • 2f Niu L, Liu J, Liang X.-A, Wang S, Lei A. Nat. Commun. 2019; 10: 467
    • 2g Sarma D, Majumdar B, Sarma TK. Green Chem. 2019; 21: 6717
    • 3a Kitabatake M, Nagai J, Abe K, Tsuchiya Y, Ogawa K, Yokoyama T, Mohri K, Taguch K, Horiguchi Y. Eur. J. Med. Chem. 2009; 44: 4034
    • 3b Hu L, Magesh S, Chen L, Wang L, Lewis TA, Chen Y, Khodier C, Inoyama D, Beamer LJ, Emge TJ, Shen J, Kerrigan JE, Kong A.-NT, Dandapani S, Palmer M, Schreiber SL, Munoz B. Bioorg. Med. Chem. Lett. 2013; 23: 3039

      For selected examples, see:
    • 4a Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
    • 4b Boess E, Schmitz C, Klussmann M. J. Am. Chem. Soc. 2012; 134: 5317
    • 4c Xie J, Li H, Zhou J, Cheng Y, Zhu C. Angew. Chem. Int. Ed. 2012; 51: 1252
    • 4d Ratnikov MO, Xu X, Doyle MP. J. Am. Chem. Soc. 2013; 135: 9475
    • 4e Ho HE, Ishikawa Y, Asao N, Yamamoto Y, Jin T. Chem. Commun. 2015; 51: 12764
    • 4f Zhao G, Yang C, Guo L, Sun H, Chen C, Xia W. Chem. Commun. 2012; 48: 2337
    • 4g Su W, Yu J, Li Z, Jiang Z. J. Org. Chem. 2011; 76: 9144
    • 4h Nobuta T, Tada N, Fujiya A, Kariya A, Miura T, Itoh A. Org. Lett. 2013; 15: 574
    • 5a McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
    • 5b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 5c Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 5d Lu Z, Shen M, Yoon TP. J. Am. Chem. Soc. 2011; 133: 1162
    • 5e Wallentin C.-J, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
    • 6a Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
    • 6b Liu Y.-X, Xue D, Wang J.-D, Zhao C.-J, Zou Q.-Z, Wang C, Xiao J. Synlett 2013; 507
    • 6c Cheng Y, Gu X, Li P. Org. Lett. 2013; 15: 2664

      For selected examples, see:
    • 7a Condie AG, González-Gómez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
    • 7b Hari DP, König B. Org. Lett. 2011; 13: 3852
    • 7c Rueping M, Zhu S, Koenigs RM. Chem. Commun. 2011; 47: 12709
    • 7d Freeman DB, Furst L, Condie AG, Stephenson CR. J. Org. Lett. 2012; 14: 94
    • 7e Meng Q.-Y, Zhong J.-J, Liu Q, Gao X.-W, Zhang H.-H, Lei T, Li Z.-J, Feng K, Chen B, Tung C.-H, Wu L.-Z. J. Am. Chem. Soc. 2013; 135: 19052
  • 8 Zhou W.-J, Cao G.-M, Shen G, Zhu X.-Y, Gui Y.-Y, Ye J.-H, Sun L, Liao L.-L, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15683
  • 9 Ren L, Cong H. Org. Lett. 2018; 20: 3225
  • 10 Schwarz J, König B. Green Chem. 2018; 20: 323
    • 11a Noble A, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
    • 11b Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 11c Ramirez NP, González-Gómez JC. Eur. J. Org. Chem. 2017; 2154
  • 12 Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
    • 13a Xie J, Xu P, Li H, Xue Q, Jin H, Cheng Y, Zhu C. Chem. Commun. 2013; 49: 5672
    • 13b Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
    • 13c Cao H, Jiang H, Feng H, Kwan JM. C, Liu X, Wu J. J. Am. Chem. Soc. 2018; 140: 16360
    • 13d Cheng W.-M, Shang R, Fu M.-C, Fu Y. Chem. Eur. J. 2017; 23: 2537
  • 14 Genovino J, Lian Y, Zhang Y, Hope TO, Juneau A, Gagné Y, Ingle G, Frenette M. Org. Lett. 2018; 20: 3229
  • 15 Wang J, Li G.-X, He G, Chen G. Asian J. Org. Chem. 2018; 7: 1307
  • 16 Tian W.-F, Hu C.-H, He K.-H, He X.-Y, Li Y. Org. Lett. 2019; 21: 6930
    • 17a Shi Q, Li P, Zhu X, Wang L. Green Chem. 2016; 18: 4916
    • 17b Wang B, Li P, Miao T, Zou L, Wang L. Org. Biomol. Chem. 2019; 17: 115
  • 18 1-(tert-Butyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3a); Typical ProcedureA tubular vessel containing a stirrer bar was charged with 1a (0.2 mmol), pivalic acid (2a; 0.5 mmol), [Acr+-Mes]ClO4 (3.0 mol%), Na2HPO4·12 H2O (0.4 mmol), acetone (1.5 mL), and H2O (1.5 mL). The mixture was stirred and irradiated by a blue LED (450–455 nm, 1.5 W) for 12 h in air at rt. When the reaction was complete, the mixture was diluted with H2O and extracted with EtOAc. The organic layers were combined, dried (Na2SO4), filtered, and concentrated. The crude product was purified by flash chromatography [silica gel, PE–EtOAc (20:1 to 9:1)] to give a white solid; yield: 36.09 mg (68%); mp 78.5–79.0 °C.1H NMR (600 MHz, CDCl3): δ = 7.21–7.19 (m, 2 H), 7.15 (s, 2 H), 7.12 (s, 2 H), 6.92 (d, J = 7.8 Hz, 2 H), 6.68–6.66 (m, 1 H), 4.67 (s, 1 H), 3.88–3.86 (m, 1 H), 3.56–3.51 (m, 1 H), 3.07–3.05 (m, 1 H), 3.00–2.97 (m, 1 H), 1.02 (s, 9 H). 13C NMR (150 MHz, CDCl3): δ = 151.2, 137.0, 135.4, 129.0, 128.7, 128.3, 126.5, 125.0, 116.6, 114.2, 66.0, 44.0, 39.2, 29.2, 27.3. HRMS (ESI): m/z [M + H]+ calcd for C19H24N: 266.1903; found: 266.1905.
  • 19 Aganda KC. C, Hong B, Lee A. Adv. Synth. Catal. 2019; 361: 1124