Synthesis 2021; 53(22): 4178-4186
DOI: 10.1055/a-1403-4312
special topic
Special Issue dedicated to Prof. Sarah Reisman, recipient of the 2019 Dr. Margaret Faul Women in Chemistry Award

Total Synthesis of Mycocyclosin and the Herqulines

,
Corinna S. Schindler
This work was supported by the Alfred P. Sloan Foundation, the David and Lucile Packard Foundation, and the Camille and Henry Dreyfus Foundation (fellowships to C.S.S.).


Abstract

Since the first reports of their isolation, mycocyclosin and the herquline family of natural products have attracted interest from the synthetic community for their uniquely strained macrocyclic architectures. This review describes the attempted and successful total syntheses of these natural products and provides a summary of the strategies developed in the years since their isolation.

1 Introduction

2 Biosynthesis

3 Early Studies

4 Total Synthesis of Mycocyclosin

5 Overview

6 Wood’s Total Syntheses of Herqulines B and C

7 Baran’s Total Syntheses of Herqulines B and C

8 Schindler’s Total Syntheses of Herqulines B and C

9 Conclusions



Publication History

Received: 27 January 2021

Accepted after revision: 02 March 2021

Accepted Manuscript online:
02 March 2021

Article published online:
16 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ōmura S, Hirano A, Iwai Y, Masuma R. J. Antibiot. 1979; 32: 786
  • 2 Furusaki A, Matsumoto T, Ogura H, Takayanagi H, Hirano A, Ōmura S. J. Chem. Soc., Chem. Commun. 1980; 698
  • 3 Enomoto Y, Shiomi K, Hayashi M, Masuma R, Kawakubo T, Tomosawa K, Iwai Y, Ōmura S. J. Antibiot. 1996; 49: 50
  • 4 Cox JB, Kimishima A, Wood JL. J. Am. Chem. Soc. 2019; 141: 25
  • 5 Yu X, Liu F, Zou Y, Tang MC, Hang L, Houk KN, Tang Y. J. Am. Chem. Soc. 2016; 138: 13529
  • 6 Belin P, Le Du MH, Fielding A, Lequin O, Jacquet M, Charbonnier J.-B, Lecoq A, Thai R, Courçon M, Masson C, Dugave C, Genet R, Pernodet J.-L, Gondry M. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 7426
  • 7 Cochrane JR, White JM, Wille U, Hutton CA. Org. Lett. 2012; 14: 2402
  • 8 Yang H. PhD Thesis . University of Birmingham; UK: 2015
  • 9 Zhu X, McAtee CC, Schindler CS. Org. Lett. 2018; 20: 2862
  • 10 Kim GT. PhD Thesis . Korea Advanced Institute of Science and Technology; Republic of Korea: 1997
  • 11 Kawai N, Atsumi T, Arai N, Kuwajima I. Nippon Kagakkai Koen Yokoshu 2003; 777
  • 12 Hart JM. PhD Thesis . University of Leeds; UK: 2004
  • 13 Stawski PS. PhD Thesis . Ludwigs-Maximilians-Universitat Munchen; Germany: 2012
  • 14 Volpin G. PhD Thesis . Ludwigs-Maximilians-Universitat Munchen; Germany: 2017
  • 15 Carbonnelle AC, Zhu J. Org. Lett. 2000; 2: 3477
  • 16 Hutton CA, Skaff O. Tetrahedron Lett. 2003; 44: 4895
  • 17 Skaff O, Jolliffe KA, Hutton CA. J. Org. Chem. 2005; 70: 7353
  • 18 Carreira EM, Imhof MA. Synfacts 2019; 15: 0224
  • 19 He C, Stratton TP, Baran PS. J. Am. Chem. Soc. 2019; 141: 29
  • 20 Cheng C, Brookhart M. J. Am. Chem. Soc. 2012; 134: 11304
  • 21 Zhu X, McAtee CC, Schindler CS. J. Am. Chem. Soc. 2019; 141: 3409
  • 22 Zanda M. Synform 2019; 7: A102
  • 23 Goldstein DM, Wipf P. Tetrahedron Lett. 1996; 37: 739
  • 24 Rama Rao AV, Gurjar MK, Sharma PA. Tetrahedron Lett. 1991; 32: 6613
  • 25 Hara H, Inoue T, Nakamura H, Endoh M, Hoshino O. Tetrahedron Lett. 1992; 33: 6491
  • 26 Quideau S, Pouységu L, Avellan AV, Whelligan DK, Looney MA. Tetrahedron Lett. 2001; 42: 7393
  • 27 Mikami K, Yamaoka M, Yoshida A, Nakamura Y, Takeuchi S, Ohgo Y. Synlett 1998; 607
  • 28 Zhou S, Junge K, Addis D, Das S, Beller M. Angew. Chem. Int. Ed. 2009; 48: 9507
  • 29 Cotsaris E, Paddon-Row MN. J. Chem. Soc., Chem. Commun. 1982; 1206