Int J Sports Med 2021; 42(08): 682-693
DOI: 10.1055/a-1393-6282
Review

A Systematic Review of Risk Factors for Anterior Cruciate Ligament Reconstruction Failure

Xianyue Shen
1   Department of Orthopedics,The Second Hospital of Jilin University, Changchun, China
,
Yanguo Qin
1   Department of Orthopedics,The Second Hospital of Jilin University, Changchun, China
,
Jianlin Zuo
2   Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
,
Tong Liu
2   Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
,
Jianlin Xiao
2   Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
› Author Affiliations
Funding This work was financially supported by the National Natural Science Foundation of China project (No. 81601908) and Outstanding Youth Foundation from the Science and Technology Department of Jilin Province (No.20180520108JH).

Abstract

Although most studies have introduced risk factors related to anterior cruciate ligament reconstruction failure, studies on combinations of high-risk factors are rare. To provide a systematic review of the risk factors of anterior cruciate ligament reconstruction failure to guide surgeons through the decision-making process, an extensive literature search was performed of the Medline, Embase and Cochrane Library databases. Studies published between January 1, 2009, and September 19, 2019, regarding the existing evidence for risk factors of anterior cruciate ligament reconstruction failure or graft failure were included in this review. Study quality was evaluated with the quality index. Ultimately, 66 articles met our criteria. There were 46 cases classified as technical factors, 21 cases as patient-related risk factors, and 14 cases as status of the knee joint. Quality assessment scores ranged from 14 to 24. This systematic review provides a comprehensive summary of the risk factors for anterior cruciate ligament reconstruction failure, including technical factors, patient-related factors, and the factors associated with the status of the knee joint. Emphasis should be placed on avoiding these high-risk combinations or correcting modifiable risk factors during preoperative planning to reduce the rate of graft rupture and anterior cruciate ligament reconstruction failure.



Publication History

Received: 03 February 2021

Accepted: 03 February 2021

Article published online:
30 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Southam BR, Colosimo AJ, Grawe B. Underappreciated factors to consider in revision anterior cruciate ligament reconstruction: A current concepts review. Orthop J Sports Med 2018; 6: 2325967117751689
  • 2 Wylie JD, Marchand LS, Burks RT. Etiologic factors that lead to failure after primary anterior cruciate ligament surgery. Clin Sports Med 2017; 36: 155-172
  • 3 Kamath GV, Redfern JC, Greis PE. et al. Revision anterior cruciate ligament reconstruction. Am J Sports Med 2011; 39: 199-217
  • 4 Hettrich CM, Dunn WR, Reinke EK. et al. The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: Two- and 6-year follow-up results from a multicenter cohort. Am J Sports Med 2013; 41: 1534-1540
  • 5 Leroux T, Wasserstein D, Dwyer T. et al. The epidemiology of revision anterior cruciate ligament reconstruction in Ontario, Canada. Am J Sports Med 2014; 42: 2666-2672
  • 6 Liechti DJ, Chahla J, Dean CS. et al. Outcomes and risk factors of rerevision anterior cruciate ligament reconstruction: A systematic review. Arthroscopy 2016; 32: 2151-2159
  • 7 Pullen WM, Bryant B, Gaskill T. et al. Predictors of revision surgery after anterior cruciate ligament reconstruction. Am J Sports Med 2016; 44: 3140-3145
  • 8 Wiggins AJ, Grandhi RK, Schneider DK. et al. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Am J Sports Med 2016; 44: 1861-1876
  • 9 panos ja, webster ke, hewett TE. Anterior cruciate ligament grafts display differential maturation patterns on magnetic resonance imaging following reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 2020; 28: 2124-2138
  • 10 Parkinson B, Robb C, Thomas M. et al. Factors that predict failure in anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 2017; 45: 1529-1536
  • 11 Ichiba A, Kishimoto I. Effects of articular cartilage and meniscus injuries at the time of surgery on osteoarthritic changes after anterior cruciate ligament reconstruction in patients under 40 years old. Arch Orthop Trauma Surg 2009; 129: 409-415
  • 12 Robb C, Kempshall P, Getgood A. et al. Meniscal integrity predicts laxity of anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2015; 23: 3683-3690
  • 13 Svantesson E, Sundemo D, Hamrin Senorski E. et al. Double-bundle anterior cruciate ligament reconstruction is superior to single-bundle reconstruction in terms of revision frequency: A study of 22,460 patients from the Swedish National Knee Ligament Register. Knee Surg Sports Traumatol Arthrosc 2017; 25: 3884-3891
  • 14 Suomalainen P, Jarvela T, Paakkala A. et al. Double-bundle versus single-bundle anterior cruciate ligament reconstruction: A prospective randomized study with 5-year results. Am J Sports Med 2012; 40: 1511-1518
  • 15 Jarvela S, Kiekara T, Suomalainen P. et al. Double-bundle versus single-bundle anterior cruciate ligament reconstruction: A prospective randomized study with 10-year results. Am J Sports Med 2017; 45: 2578-2585
  • 16 Aga C, Kartus JT, Lind M. et al. Risk of revision was not reduced by a double-bundle ACL reconstruction technique: Results from the Scandinavian registers. Clin Orthop Relat Res 2017; 475: 2503-2512
  • 17 Morgan JA, Dahm D, Levy B. et al. Femoral tunnel malposition in ACL revision reconstruction. J Knee Surg 2012; 25: 361-368
  • 18 Inderhaug E, Raknes S, Ostvold T. et al. Increased revision rate with posterior tibial tunnel placement after using the 70-degree tibial guide in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2017; 25: 152-158
  • 19 Clatworthy M, Sauer S, Roberts T. Transportal central femoral tunnel placement has a significantly higher revision rate than transtibial AM femoral tunnel placement in hamstring ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27: 124-129
  • 20 Won HH, Chang CB, Je MS. et al. Coronal limb alignment and indications for high tibial osteotomy in patients undergoing revision ACL reconstruction. Clin Orthop Relat Res 2013; 471: 3504-3511
  • 21 Brophy RH, Haas AK, Huston LJ. et al. Association of meniscal status, lower extremity alignment, and body mass index with chondrosis at revision anterior cruciate ligament reconstruction. Am J Sports Med 2015; 43: 1616-1622
  • 22 Dekker TJ, Godin JA, Dale KM. et al. Return to sport after pediatric anterior cruciate ligament reconstruction and its effect on subsequent anterior cruciate ligament injury. J Bone Joint Surg Am 2017; 99: 897-904
  • 23 van Eck CF, Schkrohowsky JG, Working ZM. et al. Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. Am J Sports Med 2012; 40: 800-807
  • 24 Hohmann E, Bryant A, Reaburn P. et al. Does posterior tibial slope influence knee functionality in the anterior cruciate ligament-deficient and anterior cruciate ligament-reconstructed knee?. Arthroscopy 2010; 26: 1496-1502
  • 25 Christensen JJ, Krych AJ, Engasser WM. et al. Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med 2015; 43: 2510-2514
  • 26 Webb JM, Salmon LJ, Leclerc E. et al. Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 2013; 41: 2800-2804
  • 27 Lee CC, Youm YS, Cho SD. et al. Does posterior tibial slope affect graft rupture following anterior cruciate ligament reconstruction?. Arthroscopy 2018; 34: 2152-2155
  • 28 Sauer S, English R, Clatworthy M. The influence of tibial slope on anterior cruciate ligament graft failure risk is dependent on graft positioning. J Orthop Surg (Hong Kong) 2019; 27: 2309499019834674
  • 29 Grassi A, Signorelli C, Urrizola F. et al. Patients with failed anterior cruciate ligament reconstruction have an increased posterior lateral tibial plateau slope: a case-controlled study. Arthroscopy 2019; 35: 1172-1182
  • 30 Astur DC, Cachoeira CM, da Silva Vieira T. et al. Increased incidence of anterior cruciate ligament revision surgery in paediatric verses adult population. Knee Surg Sports Traumatol Arthrosc 2018; 26: 1362-1366
  • 31 Kamien PM, Hydrick JM, Replogle WH. et al. Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med 2013; 41: 1808-1812
  • 32 Maletis GB, Chen J, Inacio MC. et al. Age-related risk factors for revision anterior cruciate ligament reconstruction: A cohort study of 21,304 patients from the Kaiser Permanente Anterior Cruciate Ligament Registry. Am J Sports Med 2016; 44: 331-336
  • 33 Faltstrom A, Hagglund M, Magnusson H. et al. Predictors for additional anterior cruciate ligament reconstruction: Data from the Swedish national ACL register. Knee Surg Sports Traumatol Arthrosc 2016; 24: 885-894
  • 34 Sanders TL, Pareek A, Hewett TE. et al. Long-term rate of graft failure after ACL reconstruction: a geographic population cohort analysis. Knee Surg Sports Traumatol Arthrosc 2017; 25: 222-228
  • 35 Webster KE, Feller JA, Kimp AJ. et al. Revision anterior cruciate ligament reconstruction outcomes in younger patients: medial meniscal pathology and high rates of return to sport are associated with third ACL injuries. Am J Sports Med 2018; 46: 1137-1142
  • 36 Snaebjornsson T, Svantesson E, Sundemo D. et al. Young age and high BMI are predictors of early revision surgery after primary anterior cruciate ligament reconstruction: a cohort study from the Swedish and Norwegian knee ligament registries based on 30,747 patients. Knee Surg Sports Traumatol Arthrosc 2019; 27: 3583-3591
  • 37 Magnussen RA, Lawrence JT, West RL. et al. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 2012; 28: 526-531
  • 38 Ouillette R, Edmonds E, Chambers H. et al. Outcomes of revision anterior cruciate ligament surgery in adolescents. Am J Sports Med 2019; 47: 1346-1352
  • 39 Kaeding CC, Pedroza AD, Reinke EK. et al. Change in anterior cruciate ligament graft choice and outcomes over time. Arthroscopy 2017; 33: 2007-2014
  • 40 Schlumberger M, Schuster P, Schulz M. et al. Traumatic graft rupture after primary and revision anterior cruciate ligament reconstruction: Retrospective analysis of incidence and risk factors in 2915 cases. Knee Surg Sports Traumatol Arthrosc 2017; 25: 1535-1541
  • 41 Ho B, Edmonds EW, Chambers HG. et al. Risk factors for early ACL reconstruction failure in pediatric and adolescent patients: a review of 561 cases. J Pediatr Orthop 2018; 38: 388-392
  • 42 Yabroudi MA, Bjornsson H, Lynch AD. et al. Predictors of revision surgery after primary anterior cruciate ligament reconstruction. Orthop J Sports Med 2016; 4: 2325967116666039
  • 43 Burns EA, Collins AD, Jack RA. et al. Trends in the body mass index of pediatric and adult patients undergoing anterior cruciate ligament reconstruction. Orthop J Sports Med 2018; 6: 2325967118767398
  • 44 Mars G, Magnussen RA, Borchers JR. et al. Risk factors and predictors of significant chondral surface change from primary to revision anterior cruciate ligament reconstruction: A MOON and MARS cohort study. Am J Sports Med 2018; 46: 557-564
  • 45 Su AW, Storey EP, Lin SC. et al. Association of the graft size and arthrofibrosis in young patients after primary anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 2018; 26: e483-e489
  • 46 Mariscalco MW, Flanigan DC, Mitchell J. et al. The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: A Multicenter Orthopaedic Outcomes Network (MOON) cohort study. Arthroscopy 2013; 29: 1948-1953
  • 47 Park SY, Oh H, Park S. et al. Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2013; 21: 1111-1118
  • 48 Snaebjornsson T, Hamrin Senorski E, Ayeni OR. et al. Graft diameter as a predictor for revision anterior cruciate ligament reconstruction and KOOS and EQ-5D values: A cohort study From the Swedish National Knee Ligament Register based on 2240 patients. Am J Sports Med 2017; 45: 2092-2097
  • 49 Patel NM, Talathi NS, Bram JT. et al. How does obesity impact pediatric anterior cruciate ligament reconstruction?. Arthroscopy 2019; 35: 130-135
  • 50 Pennock AT, Ho B, Parvanta K. et al. Does allograft augmentation of small-diameter hamstring autograft ACL grafts reduce the incidence of graft retear?. Am J Sports Med 2017; 45: 334-338
  • 51 Wernecke GC, Constantinidis A, Harris IA. et al. The diameter of single bundle, hamstring autograft does not significantly influence revision rate or clinical outcomes after anterior cruciate ligament reconstruction. Knee 2017; 24: 1033-1038
  • 52 Spragg L, Chen J, Mirzayan R. et al. The effect of autologous hamstring graft diameter on the likelihood for revision of anterior cruciate ligament reconstruction. Am J Sports Med 2016; 44: 1475-1481
  • 53 Putnis S, Neri T, Grasso S. et al. ACL hamstring grafts fixed using adjustable cortical suspension in both the femur and tibia demonstrate healing and integration on MRI at one year. Knee Surg Sports Traumatol Arthrosc 2020; 28: 906-914
  • 54 Boutsiadis A, Panisset JC, Devitt BM. et al. Anterior laxity at 2 years after anterior cruciate ligament reconstruction is comparable when using adjustable-loop suspensory fixation and interference screw fixation. Am J Sports Med 2018; 46: 2366-2375
  • 55 Chiang ER, Chen KH, Chih-Chang Lin A. et al. Comparison of tunnel enlargement and clinical outcome between bioabsorbable interference screws and cortical button-post fixation in arthroscopic double-bundle anterior cruciate ligament reconstruction: A prospective, randomized study with a minimum follow-up of 2 years. Arthroscopy 2019; 35: 544-551
  • 56 Ibrahim SA, Abdul Ghafar S, Marwan Y. et al. Intratunnel versus extratunnel autologous hamstring double-bundle graft for anterior cruciate ligament reconstruction: A comparison of 2 femoral fixation procedures. Am J Sports Med 2015; 43: 161-168
  • 57 Persson A, Gifstad T, Lind M. et al. Graft fixation influences revision risk after ACL reconstruction with hamstring tendon autografts. Acta Orthop 2018; 89: 204-210
  • 58 Persson A, Kjellsen AB, Fjeldsgaard K. et al. Registry data highlight increased revision rates for endobutton/biosure HA in ACL reconstruction with hamstring tendon autograft: A nationwide cohort study from the Norwegian Knee Ligament Registry, 2004–2013. Am J Sports Med 2015; 43: 2182-2188
  • 59 Harilainen A, Sandelin J. A prospective comparison of 3 hamstring ACL fixation devices – Rigidfix, BioScrew, and Intrafix – randomized into 4 groups with 2 years of follow-up. Am J Sports Med 2009; 37: 699-706
  • 60 Eysturoy NH, Nissen KA, Nielsen T. et al. The Influence of graft fixation methods on revision rates after primary anterior cruciate ligament reconstruction. Am J Sports Med 2018; 46: 524-530
  • 61 Gifstad T, Foss OA, Engebretsen L. et al. Lower risk of revision with patellar tendon autografts compared with hamstring autografts: A registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med 2014; 42: 2319-2328
  • 62 Edgar CM, Zimmer S, Kakar S. et al. Prospective comparison of auto and allograft hamstring tendon constructs for ACL reconstruction. Clin Orthop Relat Res 2008; 466: 2238-2246
  • 63 Burrus MT, Werner BC, Crow AJ. et al. Increased failure rates after anterior cruciate ligament reconstruction with soft-tissue autograft-allograft hybrid grafts. Arthroscopy 2015; 31: 2342-2351
  • 64 Bottoni CR, Smith EL, Shaha J. et al. Autograft versus allograft anterior cruciate ligament reconstruction: A prospective, randomized clinical study with a minimum 10-year follow-up. Am J Sports Med 2015; 43: 2501-2509
  • 65 Rousseau R, Labruyere C, Kajetanek C. et al. Complications after anterior cruciate ligament reconstruction and their relation to the type of graft: a prospective study of 958 cases. Am J Sports Med 2019; 47: 2543-2549
  • 66 Mars G. Effect of graft choice on the outcome of revision anterior cruciate ligament reconstruction in the Multicenter ACL Revision Study (MARS) Cohort. Am J Sports Med 2014; 42: 2301-2310
  • 67 Guo L, Yang L, Duan XJ. et al. Anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft: Comparison of autograft, fresh-frozen allograft, and gamma-irradiated allograft. Arthroscopy 2012; 28: 211-217
  • 68 Tian S, Wang B, Liu L. et al. Irradiated hamstring tendon allograft versus autograft for anatomic double-bundle anterior cruciate ligament reconstruction: Midterm clinical outcomes. Am J Sports Med 2016; 44: 2579-2588
  • 69 Sun K, Zhang J, Wang Y. et al. Arthroscopic reconstruction of the anterior cruciate ligament with hamstring tendon autograft and fresh-frozen allograft: A prospective, randomized controlled study. Am J Sports Med 2011; 39: 1430-1438
  • 70 Andernord D, Bjornsson H, Petzold M. et al. Surgical predictors of early revision surgery after anterior cruciate ligament reconstruction: results from the Swedish National Knee Ligament Register on 13,102 patients. Am J Sports Med 2014; 42: 1574-1582
  • 71 Koga H, Muneta T, Yagishita K. et al. Effect of initial graft tension on knee stability and graft tension pattern in double-bundle anterior cruciate ligament reconstruction. Arthroscopy 2015; 31: 1756-1763
  • 72 Kondo E, Yasuda K, Kitamura N. et al. Effects of initial graft tension on clinical outcome after anatomic double-bundle anterior cruciate ligament reconstruction: Comparison of two graft tension protocols. BMC Musculoskelet Disord 2016; 17: 65
  • 73 Maletis GB, Inacio MC, Funahashi TT. Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med 2015; 43: 641-647
  • 74 Inderhaug E, Drogset JO, Lygre SHL. et al. No effect of graft size or body mass index on risk of revision after ACL reconstruction using hamstrings autograft. Knee Surg Sports Traumatol Arthrosc 2020; 28: 707-713
  • 75 Kraeutler MJ, Welton KL, McCarty EC. et al. Revision anterior cruciate ligament reconstruction. J Bone Joint Surg Am 2017; 99: 1689-1696
  • 76 Lebel B, Hulet C, Galaud B. et al. Arthroscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone autograft: a minimum 10-year follow-up. Am J Sports Med 2008; 36: 1275-1282
  • 77 Keays SL, Newcombe PA, Bullock-Saxton JE. et al. Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med 2010; 38: 455-463
  • 78 Noyes FR, Barber-Westin SD. Treatment of meniscus tears during anterior cruciate ligament reconstruction. Arthroscopy 2012; 28: 123-130
  • 79 Pedneault C, Laverdiere C, Hart A. et al. Evaluating the accuracy of tibial tunnel placement after anatomic single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 2019; 47: 3187-3194
  • 80 Bhatia S, Korth K, Van Thiel GS. et al. Effect of tibial tunnel diameter on femoral tunnel placement in transtibial single bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2016; 24: 51-57
  • 81 Chen JL, Allen CR, Stephens TE. et al. Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: A MARS cohort study. Am J Sports Med 2013; 41: 1571-1578
  • 82 Hulet C, Sonnery-Cottet B, Stevenson C. et al. The use of allograft tendons in primary ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27: 1754-1770
  • 83 Zeng C, Gao SG, Li H. et al. Autograft versus allograft in anterior cruciate ligament reconstruction: A meta-analysis of randomized controlled trials and systematic review of overlapping systematic reviews. Arthroscopy 2016; 32: 153-163 e118
  • 84 Mascarenhas R, Erickson BJ, Sayegh ET. et al. Is there a higher failure rate of allografts compared with autografts in anterior cruciate ligament reconstruction: A systematic review of overlapping meta-analyses. Arthroscopy 2015; 31: 364-372
  • 85 Conte EJ, Hyatt AE, Gatt CJ. et al. Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 2014; 30: 882-890
  • 86 Krishna L, Panjwani T, Mok YR. et al. Use of the 5-strand hamstring autograft technique in increasing graft size in anterior cruciate ligament reconstruction. Arthroscopy 2018; 34: 2633-2640
  • 87 Tutkus V, Kluonaitis K, Silove S. et al. ACL reconstruction using 5- or 6-strand hamstring autograft provides graftʼs diameter bigger than 8 mm. Knee Surg Sports Traumatol Arthrosc 2018; 26: 1349-1356
  • 88 Dai C, Wang F, Wang X. et al. Arthroscopic single-bundle anterior cruciate ligament reconstruction with six-strand hamstring tendon allograft versus bone-patellar tendon-bone allograft. Knee Surg Sports Traumatol Arthrosc 2016; 24: 2915-2922
  • 89 Xu M, Gao S, Zeng C. et al. Outcomes of anterior cruciate ligament reconstruction using single-bundle versus double-bundle technique: Meta-analysis of 19 randomized controlled trials. Arthroscopy 2013; 29: 357-365
  • 90 Meredick RB, Vance KJ, Appleby D. et al. Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: A meta-analysis. Am J Sports Med 2008; 36: 1414-1421
  • 91 Svantesson E, Hamrin Senorski E, Baldari A. et al. Factors associated with additional anterior cruciate ligament reconstruction and register comparison: a systematic review on the Scandinavian knee ligament registers. Br J Sports Med 2019; 53: 418-425
  • 92 Zhu Y, Tang RK, Zhao P. et al. Double-bundle reconstruction results in superior clinical outcome than single-bundle reconstruction. Knee Surg Sports Traumatol Arthrosc 2013; 21: 1085-1096
  • 93 Grunau PD, Arneja S, Leith JM. a randomized clinical trial to assess the clinical effectiveness of a measured objective tensioning device in hamstring anterior cruciate ligament reconstruction. Am J Sports Med 2016; 44: 1482-1486
  • 94 Mae T, Shino K, Nakata K. et al. Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part I: Effect of initial tension. Am J Sports Med 2008; 36: 1087-1093
  • 95 Jisa KA, Williams BT, Jaglowski JR. et al. Lack of consensus regarding pretensioning and preconditioning protocols for soft tissue graft reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2016; 24: 2884-2891
  • 96 Nishizawa Y, Hoshino Y, Nagamune K. et al. Comparison between intra- and extra-articular tension of the graft during fixation in anterior cruciate ligament reconstruction. Arthroscopy 2017; 33: 1204-1210
  • 97 Kirwan GW, Bourke MG, Chipchase L. et al. Initial graft tension and the effect on postoperative patient functional outcomes in anterior cruciate ligament reconstruction. Arthroscopy 2013; 29: 934-941
  • 98 Gifstad T, Drogset JO, Grontvedt T. et al. Femoral fixation of hamstring tendon grafts in ACL reconstructions: The 2-year follow-up results of a prospective randomized controlled study. Knee Surg Sports Traumatol Arthrosc 2014; 22: 2153-2162
  • 99 Shelbourne KD, Gray T, Haro M. Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med 2017; 37: 246-251
  • 100 Shimozaki K, Nakase J, Takata Y. et al. Greater body mass index and hip abduction muscle strength predict noncontact anterior cruciate ligament injury in female Japanese high school basketball players. Knee Surg Sports Traumatol Arthrosc 2018; 26: 3004-3011
  • 101 Markolf KL, Jackson SR, Foster B. et al. ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle. J Orthop Res 2014; 32: 89-95
  • 102 Grassi A, Macchiarola L, Urrizola Barrientos F. et al. Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: An MRI case-control study. Am J Sports Med 2019; 47: 285-295
  • 103 van de Pol GJ, Arnold MP, Verdonschot N. et al. Varus alignment leads to increased forces in the anterior cruciate ligament. Am J Sports Med 2009; 37: 481-487
  • 104 Bonin N, Ait Si Selmi T, Donell ST. et al. Anterior cruciate reconstruction combined with valgus upper tibial osteotomy: 12 years follow-up. Knee 2004; 11: 431-437
  • 105 Trojani C, Elhor H, Carles M. et al. Anterior cruciate ligament reconstruction combined with valgus high tibial osteotomy allows return to sports. Orthop Traumatol Surg Res 2014; 100: 209-212
  • 106 Mariscalco MW, Magnussen RA, Mehta D. et al. Autograft versus nonirradiated allograft tissue for anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med 2014; 42: 492-499
  • 107 Boniello MR, Schwingler PM, Bonner JM. et al. Impact of hamstring graft diameter on tendon strength: A biomechanical study. Arthroscopy 2015; 31: 1084-1090
  • 108 Feucht MJ, Bigdon S, Bode G. et al. Associated tears of the lateral meniscus in anterior cruciate ligament injuries: Risk factors for different tear patterns. J Orthop Surg Res 2015; 10: 34
  • 109 Sonnery-Cottet B, Mogos S, Thaunat M. et al. Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 2014; 42: 1873-1880
  • 110 Dejour D, Saffarini M, Demey G. et al. Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 2015; 23: 2846-2852
  • 111 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817