Klin Monbl Augenheilkd 2021; 238(03): 261-266
DOI: 10.1055/a-1386-5361
Übersicht

Diagnostic Analyses of Retinal Dystrophy Genes: Current Status and Perspective

Diagnostik retinaler Dystrophiegene: aktueller Stand und Perspektive
Hanno Jörn Bolz
1   Humangenetik, Senckenberg Zentrum für Humangenetik, Frankfurt, Germany
2   Humangenetik, University Hospital of Cologne, Cologne, Germany
› Author Affiliations

Abstract

Over the past decade, novel high-throughput DNA sequencing technologies have revolutionised both research and diagnostic testing for monogenic disorders. This applies particularly to genetically very heterogeneous disorders like retinal dystrophies (RDs). Next-generation sequencing (NGS) today is considered as reliable as Sanger sequencing, which had been the gold standard for decades. Today, comprehensive NGS-based diagnostic testing reveals the causative mutations in the majority of RD patients, with important implications for genetic counselling for recurrence risks and personalised medical management (from interdisciplinary surveillance to prophylactic measures and, albeit yet rare, [gene] therapy). While DNA sequencing is – in most cases – no longer the diagnostic bottleneck, one needs to be aware of interpretation pitfalls and dead ends. The advent of new (NGS) technologies will solve some of these issues. However, specialised medical geneticists who are familiar with the peculiarities of certain RD genes and closely interact with ophthalmologists will remain key to successful RD research and diagnostic testing for the benefit of the patients. This review sheds light on the current state of the field, its challenges and potential solutions.

Zusammenfassung

Während des vergangenen Jahrzehnts haben neue Hochdurchsatz-DNA-Sequenziertechnologien Forschung und Diagnostik im Bereich monogener Erkrankungen revolutioniert. Dies trifft insbesondere auf Erkrankungen mit ausgeprägter genetischer Heterogenität, wie die retinalen Dystrophien (RD), zu. Next-Generation Sequencing (NGS) gilt heute als ebenso verlässlich wie die Sanger-Sequenzierung, die über Jahrzehnte den Goldstandard darstellte. Heute ermöglicht die umfassende genetische Diagnostik die Stellung einer genetischen Diagnose bei den meisten RD-Patienten, was für humangenetische Beratung und personalisierte Betreuung (von interdisziplinärer Begleitung bis hin zu prophylaktischen Maßnahmen sowie, wenngleich noch selten, [Gen-]Therapie) von großer Bedeutung ist. Während die Sequenzierung nicht mehr das Nadelöhr darstellt, muss man sich der Gefahr von Interpretationsfehlern und der Existenz „toter Winkel“ in der Diagnostik bewusst sein. Die Einführung neuer NGS-Ansätze wird einen Teil dieser Probleme lösen. Schlüssel zu einer erfolgreichen Forschung und Diagnostik bleibt jedoch die Interaktion von mit RD intensiv vertrauten Humangenetikern und behandelnden Augenärzten. Diese Übersicht behandelt den aktuellen Stand des Themas, seine Herausforderungen und mögliche Lösungen.



Publication History

Received: 14 December 2020

Accepted: 03 February 2021

Article published online:
30 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Birtel J, Gliem M, Mangold E. et al. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PLoS One 2018; 13: e0207958
  • 2 Eisenberger T, Neuhaus C, Khan AO. et al. Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies. PLoS One 2013; 8: e78496
  • 3 Pontikos N, Arno G, Jurkute N. et al. Genetic Basis of Inherited Retinal Disease in a Molecularly Characterized Cohort of More Than 3000 Families from the United Kingdom. Ophthalmology 2020; 127: 1384-1394
  • 4 Sobreira N, Schiettecatte F, Valle D. et al. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 2015; 36: 928-930
  • 5 den Hollander AI, Koenekoop RK, Yzer S. et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 2006; 79: 556-561
  • 6 Sangermano R, Garanto A, Khan M. et al. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genet Med 2019; 21: 1751-1760 doi:10.1038/s41436-018-0414-9
  • 7 Bauwens M, Garanto A, Sangermano R. et al. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genet Med 2019; 21: 1761-1771 doi:10.1038/s41436-018-0420-y
  • 8 Khan M, Cornelis SS, Pozo-Valero MD. et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet Med 2020; 22: 1235-1246
  • 9 Gilissen C, Hehir-Kwa JY, Thung DT. et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014; 511: 344-347
  • 10 Di Scipio M, Tavares E, Deshmukh S. et al. Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization. Invest Ophthalmol Vis Sci 2020; 61: 36
  • 11 Cummings BB, Marshall JL, Tukiainen T. et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med 2017; 9: eaal5209 doi:10.1126/scitranslmed.aal5209
  • 12 Kremer LS, Bader DM, Mertes C. et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun 2017; 8: 15824
  • 13 Gonorazky HD, Naumenko S, Ramani AK. et al. Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease. Am J Hum Genet 2019; 104: 466-483
  • 14 de Bruijn SE, Fiorentino A, Ottaviani D. et al. Structural Variants Create New Topological-Associated Domains and Ectopic Retinal Enhancer-Gene Contact in Dominant Retinitis Pigmentosa. Am J Hum Genet 2020; 107: 802-814
  • 15 Van Schil K, Naessens S, Van de Sompele S. et al. Mapping the genomic landscape of inherited retinal disease genes prioritizes genes prone to coding and noncoding copy-number variations. Genet Med 2018; 20: 202-213
  • 16 Pauper M, Kucuk E, Wenger AM. et al. Long-read trio sequencing of individuals with unsolved intellectual disability. Eur J Hum Genet 2020; DOI: 10.1038/s41431-020-00770-0.
  • 17 Kraft F, Kurth I. Long-read sequencing to understand genome biology and cell function. Int J Biochem Cell Biol 2020; 126: 105799
  • 18 Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C. et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med 2020; 26: 354-359
  • 19 Elsayed SM, Phillips JB, Heller R. et al. Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene. Hum Mol Genet 2015; 24: 2594-2603
  • 20 Stenson PD, Mort M, Ball EV. et al. The Human Gene Mutation Database (HGMD ®): optimizing its use in a clinical diagnostic or research setting. Hum Genet 2020; 139: 1197-1207
  • 21 Lek M, Karczewski KJ, Minikel EV. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016; 536: 285-291
  • 22 Koch L. Exploring human genomic diversity with gnomAD. Nat Rev Genet 2020; 21: 448
  • 23 Karczewski KJ, Francioli LC, Tiao G. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020; 581: 434-443
  • 24 Hanany M, Sharon D. Allele frequency analysis of variants reported to cause autosomal dominant inherited retinal diseases question the involvement of 19 % of genes and 10 % of reported pathogenic variants. J Med Genet 2019; 56: 536-542
  • 25 Repo P, Jarvinen RS, Sankila EM. et al. Identifying haplotypes in recessive inherited retinal dystrophies using whole-genome linked-read sequencing. Clin Genet 2020; 99: 193-198 doi:10.1111/cge.13847
  • 26 Soukarieh O, Gaildrat P, Hamieh M. et al. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools. PLoS Genet 2016; 12: e1005756
  • 27 Charbel Issa P, Gliem M, Yusuf IH. et al. A Specific Macula-Predominant Retinal Phenotype Is Associated With the CDHR1 Variant c.783G>A, a Silent Mutation Leading to In-Frame Exon Skipping. Invest Ophthalmol Vis Sci 2019; 60: 3388-3397
  • 28 Boycott KM, Innes AM. When One Diagnosis Is Not Enough. N Engl J Med 2017; 376: 83-85
  • 29 Posey JE, Harel T, Liu P. et al. Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N Engl J Med 2017; 376: 21-31
  • 30 Ebermann I, Elsayed SM, Abdel-Ghaffar TY. et al. Double homozygosity for mutations of AGL and SCN9A mimicking neurohepatopathy syndrome. Neurology 2008; 70: 2343-2344
  • 31 Roosing S, van den Born LI, Sangermano R. et al. Mutations in MFSD8, encoding a lysosomal membrane protein, are associated with nonsyndromic autosomal recessive macular dystrophy. Ophthalmology 2015; 122: 170-179
  • 32 Wang F, Wang H, Tuan HF. et al. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum Genet 2014; 133: 331-345
  • 33 Wang X, Wang H, Sun V. et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing. J Med Genet 2013; 50: 674-688
  • 34 Scholl HP, Strauss RW, Singh MS. et al. Emerging therapies for inherited retinal degeneration. Sci Transl Med 2016; 8: 368rv366
  • 35 Ansar M, Ranza E, Shetty M. et al. Taurine treatment of retinal degeneration and cardiomyopathy in a consanguineous family with SLC6A6 taurine transporter deficiency. Hum Mol Genet 2020; 29: 618-623
  • 36 Preising MN, Gorg B, Friedburg C. et al. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration. FASEB J 2019; 33: 11507-11527