Comparative diagnostic accuracy of EUS needles in solid pancreatic masses: a network meta-analysis

Authors
Samuel Han1, Furqan Bhullar2, Omar Alaber3, Ayesha Kamal2, Puanani Hopson4, Kavin Kanthasamy2, Sarah Coughlin5, Livia Archibugi6, Nikhil Thiruvengadam5, Christopher Moreau7, David Jin8, Pedram Paragomi9, Francisco Valverde-López10, Sajan Nagpal11, Cemal Yazici12, Georgios Papachristou1, Peter J Lee5, Venkata Akshintala2, on behalf of the Collaborative Alliance for Pancreatic Education and Research (CAPER)

Institutions
1 Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
2 Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland, United States
3 Division of Gastroenterology and Liver Disease, University Hospitals, Cleveland, Ohio, United States
4 Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
5 Division of Gastroenterology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States
6 Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
7 Division of Gastroenterology, University of Texas Health San Antonio, San Antonio, Texas, United States
8 Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital, Boston, Massachusetts, United States
9 Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
10 Division of Gastroenterology, Hospital Universitario Virgen de las Nieves, Granada, Spain
11 Division of Gastroenterology, Hepatology, and Nutrition, University of Chicago, Chicago, Illinois, United States
12 Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois, United States

submitted 19.10.2020
accepted after revision 11.1.2021

ABSTRACT

Background and study aims Endoscopic ultrasound (EUS)-guided tissue sampling is the standard of care for diagnosing solid pancreatic lesions. While many two-way comparisons between needle types have been made in randomized controlled trials (RCTs), it is unclear which size and type of needle offers the best probability of diagnosis. We therefore performed a network meta-analysis (NMA) to compare different sized and shaped needles to rank the diagnostic performance of each needle.

Methods We searched MEDLINE, EMBASE and Cochrane Library databases through August, 2020 for RCTs that compared the diagnostic accuracy of EUS fine-needle aspiration (FNA) and biopsy (FNB) needles in solid pancreatic masses. Using a random-effects NMA under the frequentist framework, RCTs were analyzed to identify the best needle type and sampling technique. Performance scores (P-scores) were used to rank the different needles based on pooled diagnostic accuracy. The NMA model was used to calculate pairwise relative risk (RR) with 95 % confidence intervals.

Results Review of 2577 studies yielded 29 RCTs for quantitative synthesis, comparing 13 different needle types. All
Introduction
Pancreatic cancer remains one of the most lethal malignancies, with a 5-year survival rate of 9% and an estimated 57,600 new cases a year [1]. Obtaining an adequate tissue sample for an accurate diagnosis represents a first step in the management of this deadly disease. Endoscopic ultrasound (EUS)-guided tissue acquisition via fine needle aspiration (FNA) or fine needle biopsy (FNB) is the standard method for sampling and diagnosing solid pancreatic masses [2,3]. Endosonographers face a variety of choices when performing EUS-guided tissue sampling of solid pancreatic masses. Recent years have seen the development of FNB needles, which feature alterations of the cutting tip or a side-slot in an attempt to preserve tissue architecture to allow for histologic examination [4,5]. Despite these technological advances, studies have not demonstrated a clear superiority of FNB needles over FNA needles [6–8]. Furthermore, the various sizes available of both FNB and FNA needles, ranging from 19G to 25G, offer a wide selection to the endoscopist with studies failing to clearly demonstrate a superiority of one size over the other [9–11]. Adding procedural techniques such as fanning and suction to the decision-making process further demonstrates the variety of choices presented to the endosonographer during the evaluation of solid pancreatic masses.

With the growing number of commercially available EUS needles, a number of randomized trials have compared needle types and sizes of needles. As conducting a randomized trial comparing all the different needle types, however, would pose significant logistical and financial challenges, we performed a network meta-analysis (NMA) to compare the different needles of choices when performing EUS-guided tissue sampling of solid pancreatic masses. Recent years have seen the development of FNB needles, which feature alterations of the cutting tip or a side-slot in an attempt to preserve tissue architecture to allow for histologic examination [4,5]. Despite these technological advances, studies have not demonstrated a clear superiority of FNB needles over FNA needles [6–8]. Furthermore, the various sizes available of both FNB and FNA needles, ranging from 19G to 25G, offer a wide selection to the endoscopist with studies failing to clearly demonstrate a superiority of one size over the other [9–11]. Adding procedural techniques such as fanning and suction to the decision-making process further demonstrates the variety of choices presented to the endosonographer during the evaluation of solid pancreatic masses.

With the growing number of commercially available EUS needles, a number of randomized trials have compared needle types and sizes of needles. As conducting a randomized trial comparing all the different needle types, however, would pose significant logistical and financial challenges, we performed a network meta-analysis (NMA) to compare the different needles with the primary aim of determining the comparative diagnostic operating characteristics in an effort to provide high-quality evidence to the practicing endoscopist in selecting a needle for sampling a solid pancreatic mass.

Methods
Literature search
We searched PUBMED, EMBASE and Cochrane Central Register of Controlled Trials using a combination of MESH terms, Emtree terms and keywords that describe EUS-FNA and FNB needles in solid pancreatic masses (see Supplementary Material). We used the Cochrane Highly Sensitive Search Strategy and the RCT filter for EMBASE as recommended by the Cochrane Handbook to identify RCTs [12]. The search had no language restrictions and included the period since inception of each database to August 2020. We also manually searched the bibliographies of relevant systematic reviews to identify trials for inclusion [6, 8, 10, 13, 14].

Eligibility criteria
We included RCTs that enrolled patients undergoing EUS and that evaluated the diagnostic accuracy of sampling techniques, EUS-FNA and FNB needles in solid pancreatic masses. We excluded conference abstracts, as the information required for the assessment of study quality as well as details related to the needle and outcome could not be adequately obtained.

Article review and data abstraction
We employed a systematic approach for reviewing the search results in accordance with the Cochrane guidelines [15] and Agency for Healthcare Research and Quality Methods Guide [16]. Four reviewers (SH, OA, AK, PH) independently reviewed titles, abstracts and full texts. In the title review stage, any study having a title potentially related to EUS was included. In the abstract review stage, any study evaluating FNA or FNB in pancreatic masses was included. During the full-text review, RCTs that compared EUS FNA and/or FNB needles were eligible for data abstraction. During the abstract and full-text review stages, we resolved conflicts by consensus. We consulted with an epidemiologist, biostatistician and an endoscopist when necessary during the review process. One reviewer abstracted data that were verified by a second reviewer, using pilot-tested data extraction forms containing all the variables of interest, including study design, population and agent characteristics, as well as the diagnostic accuracy. We assessed study quality using the Cochrane Collaboration’s tool for assessing risk of bias in RCTs [17].

Outcome of interest
Diagnostic accuracy was the primary outcome of interest. The effect of the use of suction was the secondary outcome of interest.

Statistical analysis
To combine direct and indirect evidence for FNA and FNB needle performance, an NMA was conducted in R (3.6.2, R Foundation, Vienna, Austria) using a frequentist method based on a graph-theoretical approach according to the electrical network theory [18]. In the primary analysis, needles regardless of sampling technique were compared with each other. In the secondary analysis, needles were compared with each other with regards to the use of suction. We estimated summary relative risks (RRs) for dichotomous outcomes. We ranked the various treatments for the efficacy outcomes using performance (P)
scores [19]. The P scores are values between 0 and 1 and have an interpretation analogous to the surface under the cumulative ranking curve values (SUCRA) [20] and measure the extent of certainty that a treatment is better than another treatment, averaged over all competing treatments. P scores induce a ranking of all treatments that mostly follows that of the point estimates and thus reflects pooled diagnostic accuracy but takes precision into account [21]. Statistical significance was defined at a 2-sided α level of less than 0.05. We assumed that the between-study heterogeneity was the same for all treatment comparisons in the NMA. Heterogeneity was quantified using the (within-design) Q statistic [22], the between-study variance τ², and the heterogeneity statistic I² [23]. There is a lack of a concrete methodology of assessing across-studies bias (publication bias) in NMA. Therefore, a comparison-adjusted funnel plot with accompanying Egger test for asymmetry was conducted [24]. The certainty of evidence in network estimates was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) ratings [25, 26].

Results
Included studies
A total of 2577 studies were identified, of which 2209 were screened after removing duplicates (Fig. 1). After full-text review of 145 studies, a total of 26 studies with 3398 subjects were included in the primary network meta-analysis. The network of randomized trials centered around comparison with the 22G EchoTip FNA needle (Cook, Bloomington, IN) is depicted in Fig. 2 [27–50]. Comparison of the 22G FNA (Cook) and FNB (Cook) needles contained the largest number of studies (n = 5) followed by comparison (n = 3) between the 22G FNA (Cook) needle and the 25G FNA (Cook) needle. Other needles of investigations included 22G and 25G Boston Scientific FNA (Expect)/FNB (Acquire) needles (Marlborough, MA) [51–56], the 22G Olympus FNA/FNB needle (EZ Shot 3, Olympus America, Center Valley, PA) [57–59], the 22G Medtronic FNB needle (SharkCore, Dublin, Ireland) [51], the 25G Cook FNA needle [60], the 21G Hakko FNB needle (EUS Sonopsy CY, Tokyo, Japan) [61], and the 20G, 22G, and 25G Cook ProCore FNB needles [58, 62–64]. The baseline characteristics of the included randomized trials are depicted in Table 1. All studies came from Europe, Asia, and North America.

Diagnostic accuracy
In terms of pooled diagnostic accuracy, the greatest performance score (0.9279, RR: 1.27, 95 % CI: 1.12–1.44) was seen in the 22 G SharkCore FNB needle (Medtronic) followed by the 22G EZ Shot 3 FNB needle (Olympus) with a performance score of 0.8962 (RR: 1.26, 95 % CI: 1.11–1.43) and the 22G Acquire FNB needle (Boston Scientific) with a performance score of 0.8739 (RR: 1.25, 95 % CI: 1.11–1.41) in comparison to the 22G FNA EchoTip (Cook) Needle (Fig. 3). Concordantly, these are also reflected in the pairwise comparisons shown in Supplementary Table 1 where these three 22G FNB needles (SharkCore, EZ Shot 3, and Acquire) had a significantly higher diagnostic performance than the 22G FNA and FNB Cook needles. In addition to the 3 aforementioned needles, the 22G Expect FNA needle (Boston Scientific) also had a significantly greater diagnostic accuracy (performance score 0.7963, RR: 1.19, 95 % CI: 1.07–1.33) than the 22G FNA needle (Cook). The 19G and 25G Expect FNA needles (Boston Scientific) had significantly lower diagnostic accuracy (25G performance score 0.0270, RR: 0.76, 95 % CI: 0.61–0.95; 19G performance score 0.0778, RR: 0.80, 95 % CI: 0.66–0.97) compared to the 22G FNA needle (Cook). The majority of FNB needles with the exception of the 21G FNB needle (Hakko) and 25G FNB needle (Cook) had a RR > 1 and corresponding performance scores greater than that of the reference 22G FNA needle. Relative risks of comparisons between specific needle types are shown in Supplementary Table 1 with notable findings including the lack of any significant difference between the three top-performing FNB needles (22G SharkCore, EZ Shot 3, and Acquire). There was no significant heterogeneity within the study designs (Q statistic 13.17, P = 0.15) and no significant inconsistency between study designs (Q statistic 1.16, P = 0.56). The between-study variance τ² was 0.14, and the heterogeneity statistic I² was 23.2 %, corresponding to small amount of heterogeneity overall (<25 %).

Secondary outcome
Supplementary Fig. 1 depicts a network Forest plot comparing needle size and type (regardless of manufacturer) by use of suction (Supplementary Table 2). In comparison to use of a 22G FNA needle with suction, diagnostic accuracy was not significantly different between any of the needles with or without suction.
suction (22G FNB with suction performance score 0.6841, RR: 1.03, 95% CI: 0.98–1.08) with the exception of the 20G FNB needle with suction which performed significantly worse than the 22G FNA needle with suction (performance score 0.0504, RR: 0.79, 95% CI: 0.64–0.97). Relative risks comparing needle types with and without suction are shown in Supplementary Table 3 and ▶ Fig. 4.

Quality of evidence
In examining the quality of the randomized studies included, we found that performance bias was potentially high due to the unblinded nature of the trials (Supplementary Fig. 2). Reporting bias was also of concern due to the selective reporting of diagnostic operative characteristics within studies in addition to inconsistent definitions. A funnel plot with Egger’s test of the included studies did not find any significant publication bias ($P = 0.97$) (Supplementary Fig. 3). The certainty of evidence for the network estimates (CINeMA) in line with GRADE recommendations is reported in the Supplementary Material. The CINeMA framework gives moderate-high confidence rating to the top performing EUS needles suggesting credibility for translating the NMA results to practice.

Discussion
The results of this network meta-analysis provide a higher level of evidence for the greater diagnostic accuracy of FNB needles in comparison to FNA needles in the evaluation of pancreatic solid masses. Specifically, 22G FNB needles from Medtronic (SharkCore), Olympus (EZ Shot 3 Plus) and Boston Scientific (Acquire), respectively, had the three highest rates of obtaining the correct diagnosis compared to other needle types and gauges.

The SharkCore (Medtronic) is a fork-tip needle with six distal cutting-edge surfaces in an asymmetric design while the EZ Shot 3 Plus (Olympus) is a nitinol needle with a Menghini tip and the Acquire (Boston Scientific) has a crown-tip with three symmetrical surfaces containing three cutting edges. These needles were designed to not only acquire histologically intact tissue samples for indications such as subtyping of suspected lymphoma, autoimmune pancreatitis and neuroendocrine tumor, but also offer higher diagnostic accuracy. These needles were evaluated in a head to head fashion in a recent randomized trial by Bang et al [49]. They directly compared four different types of 22G FNB needles and similar to our results, found that the SharkCore (Medtronic) and the Acquire (Boston Scientific) performed best with diagnostic accuracies >90%, although with the application of suction, the EZ Shot 3 Plus (Olympus) had a comparable diagnostic accuracy of 87.9%.
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Mean age ± SD</th>
<th>Female n (%)</th>
<th>Location of mass head/uncinate n (%)</th>
<th>EUS needle evaluated</th>
<th>Number of patients or samples included/analyzed</th>
<th>Positive diagnosis n (%) (accuracy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alatawi et al 2015 [28]</td>
<td>France</td>
<td>68 ± 11.2</td>
<td>15 (30)</td>
<td>38 (76)</td>
<td>22G FNA Cook</td>
<td>50</td>
<td>45 (90)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67.8 ± 13.1</td>
<td>22 (44)</td>
<td>34 (68)</td>
<td>22G FNB Cook</td>
<td>50</td>
<td>50 (100)</td>
</tr>
<tr>
<td>Asokkumar et al 2019 [29]</td>
<td>Singapore</td>
<td>63.5 ± 11.4</td>
<td>16 (44)</td>
<td>NR</td>
<td>22G FNA Boston Scientific</td>
<td>20</td>
<td>18 (90)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NR</td>
<td>22G FNB Boston Scientific</td>
<td>20</td>
<td>18 (90)</td>
</tr>
<tr>
<td>Bang et al 2012 [52]</td>
<td>USA</td>
<td>65 ± 11</td>
<td>12 (42.9)</td>
<td>20 (71.4)</td>
<td>22G FNA Boston Scientific</td>
<td>28</td>
<td>28 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65 ± 15.4</td>
<td>13 (46.4)</td>
<td>20 (71.4)</td>
<td>22G FNB Cook</td>
<td>28</td>
<td>25 (89)</td>
</tr>
<tr>
<td>Bang et al 2018 [51]</td>
<td>USA</td>
<td>71.3 ± 11</td>
<td>22 (44)</td>
<td>29 (58)</td>
<td>22G FNB Boston Scientific</td>
<td>50</td>
<td>47 (94)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22G FNB Medtronic</td>
<td>50</td>
<td>49 (98)</td>
<td></td>
</tr>
<tr>
<td>Bang et al 2020 [49]</td>
<td>USA</td>
<td>71.9 ± 10.6</td>
<td>16 (48.5)</td>
<td>25 (75.8)</td>
<td>22G FNB Cook</td>
<td>33</td>
<td>28 (85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67.9 ± 13.8</td>
<td>13 (39.4)</td>
<td>27 (81.8)</td>
<td>22G FNB Olympus</td>
<td>33</td>
<td>33 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69.8 ± 9.9</td>
<td>18 (56.3)</td>
<td>24 (75)</td>
<td>22G FNB Boston Scientific</td>
<td>32</td>
<td>32 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63.8 ± 15.5</td>
<td>14 (45.2)</td>
<td>23 (74.2)</td>
<td>22G FNB Medtronic</td>
<td>31</td>
<td>31 (100)</td>
</tr>
<tr>
<td>Cheng et al 2018 [30]</td>
<td>China</td>
<td>58.3 ± 12.2</td>
<td>51 (40.7)</td>
<td>NR</td>
<td>22G FNA Cook</td>
<td>126</td>
<td>107 (85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.3 ± 11.1</td>
<td>45 (36.4)</td>
<td>NR</td>
<td>22G FNB Cook</td>
<td>123</td>
<td>110 (89)</td>
</tr>
<tr>
<td>Cho et al 2020 [61]</td>
<td>Korea</td>
<td>69</td>
<td>23 (51.1)</td>
<td>24 (53.3)</td>
<td>20G FNB Cook</td>
<td>45</td>
<td>40 (89)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64</td>
<td>17 (39.5)</td>
<td>23 (53.5)</td>
<td>25G FNB Cook</td>
<td>43</td>
<td>34 (79)</td>
</tr>
<tr>
<td>Fabbri et al 2011 [31]</td>
<td>Italy</td>
<td>68.2 ± 7.4</td>
<td>20 (40)</td>
<td>42 (84)</td>
<td>22G FNA Cook</td>
<td>50</td>
<td>43 (86)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25G FNB Cook</td>
<td>50</td>
<td>47 (94)</td>
<td></td>
</tr>
<tr>
<td>Gimeno-García et al 2014 [32]</td>
<td>Canada</td>
<td>65.6 ± 11.3</td>
<td>61 (50.8)</td>
<td>43 (34.1)</td>
<td>22G FNA Cook</td>
<td>78</td>
<td>65 (83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25G FNA Cook</td>
<td>78</td>
<td>70 (90)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22G FNB Cook</td>
<td>68</td>
<td>47 (69)</td>
<td></td>
</tr>
<tr>
<td>Hucl et al 2013 [33]</td>
<td>India</td>
<td>51.7 ± 13.6</td>
<td>32 (46)</td>
<td>37 (54)</td>
<td>22G FNA Cook</td>
<td>69</td>
<td>51 (74)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22G FNB Cook</td>
<td>69</td>
<td>59 (86)</td>
<td></td>
</tr>
<tr>
<td>Igarashi et al 2019 [61]</td>
<td>Japan</td>
<td>74.4 ± 9.0</td>
<td>19 (63.3)</td>
<td>13 (43.3)</td>
<td>22G FNB Cook</td>
<td>30</td>
<td>24 (80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21G FNB Hakko</td>
<td>30</td>
<td>22 (73)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
<td>49 (45)</td>
<td>NR</td>
<td>25G FNA Cook</td>
<td>108</td>
<td>82 (76)</td>
</tr>
<tr>
<td>Karsenti et al 2020 [50]</td>
<td>France</td>
<td>Median (IQR): 69 (63–74) 22 (37)</td>
<td>32 (53)</td>
<td>20G FNB Cook</td>
<td>60</td>
<td>40 (67)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22G FNB Boston Scientific</td>
<td>60</td>
<td>52 (87)</td>
<td></td>
</tr>
<tr>
<td>Laquière et al 2019 [34]</td>
<td>France</td>
<td>73</td>
<td>26 (41)</td>
<td>NR</td>
<td>22G FNA Cook</td>
<td>63</td>
<td>55 (87)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
<td>22 (37)</td>
<td>NR</td>
<td>19G FNA Boston Scientific</td>
<td>59</td>
<td>41 (69)</td>
</tr>
</tbody>
</table>
In contrast, Faciorusso et al. recently published an NMA that indicated no difference between FNA and FNB needles in the diagnostic accuracy of EUS-guided sampling of solid pancreatic masses [8]. Several factors may explain the differences in our results with Faciorusso et al. We were able to include data from several recent trials such as the aforementioned study by Bang et al., which were not yet available at the time of Faciorusso et al.’s date of search and support the high diagnostic accuracy of FNB needles. We also excluded conference papers not yet published in manuscript form to ensure a strict transitivity in our NMA. Furthermore, as seen in our network geometry, we delineated the needle types by brand of needle, using the most commonly studied needle (22G FNA Cook) as our reference needle. By doing so, we demonstrated a clear superiority of 22G FNB needles in this analysis with all the different types of 22G FNB needles having RRs greater than 1 in comparison to the reference needle. This supports the anecdotal thinking and leaning over the past several years since the mainstream introduction of the FNB needle as more and more endosonographers have increasingly utilized FNB needles over FNA needles in targeting solid lesions [30, 65].

Our results have immediate clinical practice implications. Given the availability of different needle shapes and sizes from different manufacturers, there are over 14 different needles available on the market. This wide array of options pose difficulties for practices to determine which needle is the best performing. Exploiting the ability of network meta-analysis, we were able to rank the needles from 1 to 14 with associated comparative risk ratios and performance scores. The presentation of our results potentially makes it easier for endosonographers to immediately assess the comparative performances of each needle.

In our secondary analysis, addition of suction did not appear to provide incremental improvement in diagnostic accuracy.

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Country</th>
<th>Mean age ± SD</th>
<th>Female n (%)</th>
<th>Location of mass head/uncinate n (%)</th>
<th>EUS needle evaluated</th>
<th>Number of patients or samples included/analyzed</th>
<th>Positive diagnosis n (%) (accuracy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al 2009 [35]</td>
<td>USA</td>
<td>NR</td>
<td>NR</td>
<td>7 (58)</td>
<td>22G FNA Cook</td>
<td>12</td>
<td>12 (100)</td>
</tr>
<tr>
<td>Mavrogenis et al 2015 [41]</td>
<td>Belgium</td>
<td>Median: 69</td>
<td>18 (67)</td>
<td>NR</td>
<td>22G FNA Cook</td>
<td>19</td>
<td>16 (84)</td>
</tr>
<tr>
<td>Noh et al 2018 [58]</td>
<td>Korea</td>
<td>61.6 ± 10</td>
<td>25 (41.7)</td>
<td>23 (38)</td>
<td>22G FNA Olympus</td>
<td>60</td>
<td>57 (95)</td>
</tr>
<tr>
<td>Park et al 2016 [63]</td>
<td>Korea</td>
<td>65.8 ± 9.5</td>
<td>21 (38)</td>
<td>28 (50)</td>
<td>22G FNB Cook</td>
<td>56</td>
<td>34 (61)</td>
</tr>
<tr>
<td>Ramesh et al 2015 [54]</td>
<td>USA</td>
<td>68.1 ± 11</td>
<td>19 (38)</td>
<td>30 (60)</td>
<td>19G FNA Boston Scientific</td>
<td>50</td>
<td>48 (96)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68.8 ± 11</td>
<td>20 (40)</td>
<td>31 (62)</td>
<td>25G FNA Boston Scientific</td>
<td>50</td>
<td>46 (92)</td>
</tr>
<tr>
<td>Sakamoto et al 2009 [44]</td>
<td>Japan</td>
<td>NR</td>
<td>NR</td>
<td>12 (50)</td>
<td>19G FNA Cook</td>
<td>24</td>
<td>13 (54)</td>
</tr>
<tr>
<td>Song et al 2010 [48]</td>
<td>Korea</td>
<td>56.77 ± 12.13</td>
<td>26 (43)</td>
<td>26 (43)</td>
<td>19G FNA Cook</td>
<td>60</td>
<td>52 (87)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.63 ± 11.74</td>
<td>29 (51)</td>
<td>29 (51)</td>
<td>22G FNA Cook</td>
<td>57</td>
<td>45 (79)</td>
</tr>
<tr>
<td>Sterlacci et al 2016 [45]</td>
<td>Germany</td>
<td>68 ± 12</td>
<td>27 (48.2)</td>
<td>NR</td>
<td>22G FNA Cook</td>
<td>37</td>
<td>33 (89)</td>
</tr>
<tr>
<td>Tian et al 2018 [59]</td>
<td>China</td>
<td>61.4 ± 6.9</td>
<td>6 (33.3)</td>
<td>8 (44.4)</td>
<td>22G FNA Olympus</td>
<td>18</td>
<td>15 (83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61.2 ± 9.3</td>
<td>7 (38.9)</td>
<td>8 (44.4)</td>
<td>22G FNB Cook</td>
<td>18</td>
<td>15 (83)</td>
</tr>
<tr>
<td>Vanbijvenvliet et al 2014 [46]</td>
<td>France</td>
<td>67.1 ± 11.1</td>
<td>31 (39)</td>
<td>50 (62.5)</td>
<td>22G FNA Cook</td>
<td>80</td>
<td>74 (93)</td>
</tr>
<tr>
<td>Woo et al 2017 [64]</td>
<td>Korea</td>
<td>61.2 ± 12.8</td>
<td>41 (40)</td>
<td>41 (40)</td>
<td>22G FNB Cook</td>
<td>103</td>
<td>100 (97)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61.3 ± 11.6</td>
<td>37 (36)</td>
<td>48 (47)</td>
<td>25G FNB Cook</td>
<td>103</td>
<td>94 (91)</td>
</tr>
</tbody>
</table>
Several studies have supported the use of suction in tissue sampling with two randomized controlled trials demonstrating greater diagnostic accuracy in EUS-FNA of solid pancreatic masses [37, 56]. Studies comparing suction to no suction in FNB studies, however, are lacking. As a result, our NMA likely lacked the power to detect a meaningful difference between suction and no-suction method. Our findings suggest that application of suction to the FNB needle does not add incremental value to diagnostic accuracy during tissue acquisition but additional randomized clinical trials are warranted.

The main strength of this study was the use of a NMA to analyze multiple RCTs using rigorous methodology. In addition, we utilized the GRADE ratings to assess the certainty of evidence to make the data clinically applicable. Several limitations of the study, however, warrant further discussion. As with all network meta-analyses, there exists limited network connectivity as demonstrated in ▶ Fig. 1 where there are a limited number of

![Fig. 3](image-url) Performance scores and relative risk (RR) of diagnostic accuracy in comparison to 22G FNA Cook Needle. FNA, fine needle aspiration.

![Fig. 4](image-url) A network Forest plot comparing each of the EUS needles against a 22G Cook FNA needle including relative risk (RR) and 95% confidence intervals (CI). A rank based on cumulative direct and indirect evidence using performance score from the network meta-analysis is included.
head-to-head comparisons for several needle types. In addition, indirect evidence, while useful in situations with limited studies, must always be interpreted with caution, particularly given how diagnostic accuracies offer an estimate and not an exact probability of performance. None of the randomized studies were blinded, which introduces performance bias. Further, several factors associated with tissue sampling, i.e. fanning, ROSE, number of passes, could not be accounted for due to either unavailability of data or non-standardized nature of these variables in the included studies. Number of passes, which is a variable that affects sensitivity of EUS-guided tissue acquisition [42], was not recorded in most studies and may have affected our results. Lastly, we did not account for the cost of these needles. More studies are needed to assess the cost-effectiveness of the needles to not only guide individual endoscopists but endoscopy units as a whole given the financial reality of cost limitations and restraints with industry-institution contracts.

Conclusions

In summary, this network meta-analysis suggests that 22G FNB needles offer greater diagnostic performance in the sampling of solid pancreatic masses in comparison to FNA needles. These results may help guide endoscopists in the important decision of choosing which needle to use for pancreatic mass tissue sampling. Choosing a needle with a high diagnostic accuracy can help endoscopists meet the quality indicator threshold as advocated by the US and European societies of having a sensitivity ≥ 85% in pancreatic masses and most importantly, deliver the highest-quality care to each patient [66, 67].

Competing interests

The authors declare that they have no conflict of interest.

References

[26] Brignardello-Petersen R, Murad MH, Walter SD et al. GRADE approach to rate the certainty from a network meta-analysis: avoiding spurious

[29] Assokumar R, Yung Ka C, Loh T et al. Comparison of tissue and molecular yield between fine-needle biopsy (FNB) and fine-needle aspiration (FNA): a randomized study. Endosc Int Open 2019; 7; E955–E963

[40] Lee BS, Cho CM, Jung MK et al. Comparison of histologic core portions acquired from a core biopsy needle and a conventional needle in solid mass lesions: a prospective randomized trial. Gut Liver 2017; 11: 559–566

[56] Ishiwatari H, Hayashi T, Kawakami H et al. Randomized trial comparing a side-port needle and standard needle for EUS-guided histology of pancreatic lesions. Gastrointest Endosc 2016; 84: 670–678

Woo YS, Lee KH, Noh DH et al. 22G versus 25G biopsy needles for EUS-guided tissue sampling of solid pancreatic masses: a randomized controlled study. Scand J Gastroenterol 2017; 52: 1435–1441

CORRECTION
Samuel Han, Furqan Bhullar, Omar Alaber et al. Comparative diagnostic accuracy of EUS needles in solid pancreatic masses: a network meta-analysis
Endoscopy International Open 2021; 09: E853–E862. DOI: 10.1055/a-1381-7301
In the above mentioned article the name of a co-author was misspelled. Correct is: Papachristou