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ZUSAMMENFASSUNG

Hintergrund Radiologische Untersuchungen nicht nur als

bloße Bilder, sondern als Datenquelle zu betrachten, ist zum

modernen Paradigma der diagnostischen Bildgebung gewor-

den. Dieser Perspektivwechsel hat sich besonders in der

Brustbildgebung durchgesetzt, ermöglicht er doch aus der

Informatik abgeleitete Verfahren anzuwenden, innovative

klinische Anwendungen zu realisieren und bereits etablierte

Methoden zu verfeinern. In diesem Zusammenhang sind die

Begriffe „bildgebender Biomarker“, „Radiomics“ und „künst-

liche Intelligenz“ von zentraler Bedeutung. Diese Methoden

versprechen nichtinvasive, kostengünstige (z. B. im Vergleich

zu Multigen-Arrays), Workflow-freundliche (automatisiert,

nur eine Untersuchung, sofortige Ergebnisse) und klinisch

relevante Informationen.

Methode und Ergebnisse Dieser Artikel wurde als narratives

Review zu dem besagten Paradigma im Bereich der Brustbild-

gebung konzipiert. Der Schwerpunkt liegt auf den Schlüssel-

konzepten und wichtigen Schlagworten. Für alle Bereiche der

Brustbildgebung werden beispielhafte Studien diskutiert.

Schlussfolgerung Die Interpretation von radiologischen Un-

tersuchungen als Datenquelle verspricht eine Optimierung

der Behandlung von Brustkrebspatientinnen im Zeitalter der

Präzisionsmedizin, da hiermit die Diagnose verfeinert und

eine individualisierte Behandlung erreicht werden könnte.

Kernaussagen:
▪ In der konventionellen Brustbildgebung werden Untersu-

chungen anhand von visuell erkennbaren Mustern inter-

pretiert.

▪ Das Radiomics-Paradigma behandelt radiologische Brust-

untersuchungen hingegen als abstrakte Datenquelle, in

der Informationen zu finden sind, die über visuell erkenn-

bare Muster hinausgehen.

▪ Derartige radiomische Signaturen können als bildgebende

Biomarker angesehen werden, da sie diagnostische, prä-

diktive und prognostische Informationen liefern.

▪ Derartige bildgebende Biomarker können im Zeitalter der

Präzisionsmedizin zur Individualisierung der Brustkrebsbe-

handlung eingesetzt werden.

▪ In diesem narrativen Übersichtsartikel stellen wir das

Radiomics-Paradigma auf dem Gebiet der Brustkrebsbild-

gebung anhand von exemplarischen Literaturbeispielen dar.

ABSTRACT

Background Considering radiological examinations not as

mere images, but as a source of data, has become the key

paradigm in the diagnostic imaging field. This change of per-

spective is particularly popular in breast imaging. It allows

breast radiologists to apply algorithms derived from compu-

ter science, to realize innovative clinical applications, and to

refine already established methods. In this context, the termi-

nology “imaging biomarker”, “radiomics”, and “artificial intel-

ligence” are of pivotal importance. These methods promise
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noninvasive, low-cost (e. g., in comparison to multigene

arrays), and workflow-friendly (automated, only one examina-

tion, instantaneous results, etc.) delivery of clinically relevant

information.

Methods and Results This paper is designed as a narrative

review on the previously mentioned paradigm. The focus is

on key concepts in breast imaging and important buzzwords

are explained. For all areas of breast imaging, exemplary stud-

ies and potential clinical use cases are discussed.

Conclusion Considering radiological examination as a source

of data may optimize patient management by guiding indivi-

dualized breast cancer diagnosis and oncologic treatment in

the age of precision medicine.

Key Points:
▪ In conventional breast imaging, examinations are inter-

preted based on patterns perceivable by visual inspection.

▪ The radiomics paradigm treats breast images as a source

of data, containing information beyond what is visible to

our eyes.

▪ This results in radiomic signatures that may be considered

as imaging biomarkers, as they provide diagnostic, predic-

tive, and prognostic information.

▪ Radiomics derived imaging biomarkers may be used to

individualize breast cancer treatment in the era of preci-

sion medicine.

▪ The concept and key research of radiomics in the field of

breast imaging will be discussed in this narrative review.

Citation Format
▪ Dietzel M, Clauser P, Kapetas P et al. Images Are Data: A

Breast Imaging Perspective on a Contemporary Paradigm.

Fortschr Röntgenstr 2021; 193: 898–908

Background

Breast imaging settings and potential impact
of data-driven tools

Imaging plays a decisive role in the detection, management, and
follow-up of breast disease. By definition, breast imaging is multi-
modal, meaning that a combination of different imaging methods
is employed as suited to the clinical workflow. For a better under-
standing of the results and decisions that may be impacted by
data-driven tools, a structured description is helpful.

Screening

Despite ongoing controversies around screening tests in general
and breast cancer screening specifically, most expert societies re-
commend secondary breast cancer prevention by screening
mammography for the early detection of breast cancer [1]. Mass
screening applies the same test (mammography) to the eligible
population, that is, with some variations, women aged 50–
70 years. In recent years, medicine has moved to a more persona-
lized approach that recognizes that diagnostic and therapeutic in-
terventions have an individual impact [2]. This also holds true for
breast cancer screening: women differ regarding their risk profile
and screening mammography is less effective in dense breasts as
compared to non-dense breasts as lesions are more likely to be
masked by breast parenchyma. In addition, breast density is one
independent risk factor that is easily accessible by mammography
[3]. A woman with dense breasts is thus at double risk: higher risk
of developing cancer compared to the average population and risk
of missed cancer by mammography. On the other hand, a sub-
group of women may exhibit such a low risk of breast cancer that
screening is so unlikely to have an impact on morbidity and mor-
tality that mammography screening may not be required. Thus,
one future approach to solve this issue is to use data-driven tools
including automated image analyses to stratify women into those
who require screening mammography, those who require supple-
mental or alternative screening tools such as breast MRI, and

those who may not require screening at all (▶ Fig. 1). The mass
screening setting is characterized by a low prevalence of breast
cancer and thus an overwhelming proportion of negative (= heal-
thy) cases [4]. Image data-driven tools could help to identify cases
that are definitely benign and thus reduce the workload and con-
sequently possible reader mistakes as a result of performing a
tiring and monotonous task [5]. The latter could be avoided
by computational image-data analysis pointing out evident pa-
thology. A positive finding is a screening recall, usually confirmed
or refuted by a second reader and then sent to an assessment cen-
ter (▶ Fig. 1). Again, data-driven tools can help in this step by
acting as a second reader, providing an objective risk of cancer es-
timation, reducing unnecessary recalls (▶ Fig. 1).

Assessment

Both screening recalls in asymptomatic women as well as sympto-
matic women are assessed by further imaging and, if required,
minimally invasive image-guided biopsies. The physician has to
decide whether the recall or symptomatic finding requires further
imaging or biopsy (and the method of image guidance) or can be
downgraded and what follow-up tests and intervals are necessary.
Both the choice of further imaging as well as the decision provide
ample opportunity to employ data-driven decision-support tools
(▶ Fig. 1). From a value-based health care perspective, avoidable
biopsies and avoidable additional tests provide value for the pa-
tient while at the same time saving resources.

Therapy guidance and monitoring

Breast cancer treatment is driven by molecular subtypes that are
usually determined using immunohistochemically examined tis-
sue specimens from image-guided biopsies. A significant propor-
tion of breast cancer cases undergo neoadjuvant therapy before
surgery that can even be omitted or at least delayed in the case
of multimorbid patients. As neoadjuvant treatment is a main
cost driver in breast cancer diagnosis and treatment [6], imaging
tests could play a pivotal role in adapting treatment [7]. While
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therapy could be deescalated in early complete responders, ther-
apy regimes could be changed in non-responders. While there is
currently no solid evidence regarding which technology and ima-
ging markers should be used when, it is conceivable that the
complexity of the matter would, again, profit from data-driven
decision-support tools.

Key buzz words

Before we address the topic in a narrative overview on the current
literature, three important terms are introduced and briefly dis-
cussed from the breast imaging perspective.

Breast imaging biomarkers

The term “biomarker”was initially restricted to biologic molecules
[8]. The much broader current definition considers any “defined
characteristic that is measured as an indicator of normal biological
processes, pathogenic processes, or responses to an exposure or
intervention, including therapeutic interventions” as a potential
“biomarker” [9]. This conceptual change opened the door to the
evaluation of radiologic examinations as an “imaging biomarker”
[10].

In clinical practice and breast cancer-related research, biomar-
kers are used as surrogate outcome measures [11]. Surrogate
parameters are of great importance, because direct endpoints

(e. g. overall survival) are very difficult to capture in clinical trials
[12]. Typical applications of biomarkers are prediction and moni-
toring of therapy response (e. g., ki67 determination during ongo-
ing neoadjuvant chemotherapy) as well as prognosis of patient
outcome (risk stratification using genetic microarrays) [13–17].
Accordingly, biomarkers are considered pivotal in precision medi-
cine [18].

Imaging biomarkers may be classified as quantitative, ordinal,
and qualitative. Breast cancer size remains one of the most impor-
tant surrogates of patient outcome and treatment response,
which is why radiological measurement of tumor dimensions is a
classic quantitative breast imaging biomarker [19, 20]. Beside
morphologic evaluations, breast imaging offers numerous ad-
vanced methods of functional tissue assessment. For instance,
the tissue microstructure may be quantitatively investigated by
the apparent diffusion coefficient (ADC) [21, 22]. Distinguishing
invasive and in situ breast cancer growth is pivotal both for ther-
apy planning and for the estimation of patient outcome. Accord-
ing to Bickel et al., the ADC may be used as a quantitative breast
imaging biomarker of breast cancer invasiveness [22].

Breast density has been established as one of the most impor-
tant independent risk factors of breast cancer [3, 23, 24]. In the
clinical routine breast density is visually assessed on a four-level
scale and thus may be considered an ordinal imaging biomarker
[24]. In addition, a variety of methods have been described to
assess breast density ranging from fully automated to quantita-
tive techniques [25–28].

Qualitative breast imaging descriptors are typically used to
establish the diagnosis of breast cancer [24]. However, many of
these patterns could be associated as well with the underlying
tumor biology and may be considered qualitative biomarkers.
For instance, perifocal edema is predictive of malignancy but also
suggestive of unfavorable prognosis such as the presence lymph
nodes metastasis [29–31].

Imaging Biomarker Panels

The discriminatory power of individual breast imaging biomarkers
can be further improved if they are combined with one another
into imaging biomarker panels. Various methods have been inves-
tigated for this purpose, with artificial intelligence and radiomics
being most promising [14, 15, 32–34]. For instance, the occur-
rence of lymph node metastasis may be further improved by the
joint analysis of qualitative and quantitative breast imaging
biomarkers applying artificial neural networks or radiomics [33,
35–37].

Radiomics

Among the methods for combined analysis of imaging biomarker
panels, radiomics have arguably gained the greatest attention
[38]. Since the introduction of the term, to date a total of 3145
articles on radiomics have already been published, of which the
majority (49.4 %, 1555/3145) are related to breast imaging [39].
This illustrates both the huge interest among the scientific com-
munity in radiomics-related research and the dominant role of
breast imaging.

▶ Fig. 1 Arrows represent decisions, dashed arrows logical steps.
Possible interaction steps of data-driven decision support tools are
highlighted as grey A.I. arrows.

▶ Abb.1 Pfeile stehen für Entscheidungen, gestrichelte Pfeile für
logische Schritte. Mögliche Interaktionsschritte von datenge-
steuerten Werkzeugen zur Entscheidungsfindung sind als graue
A.I.-Pfeile hervorgehoben.
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Radiomics approaches breast images not as mere pictures but
as a source of comprehensive data containing viable patient infor-
mation not perceivable with our human eyes. The analytic radio-
mic workflow starts with segmentation of the tissue of interest,
followed by extraction of a large number of tissue characteristics
expressed as arithmetic functions, of which the most important
ones are chosen during statistical feature selection and applied for
machine-learning-based model building. The output of this work-
flow is an algorithm or model that can diagnose or predict the
intended target condition or property. The result of the radiomic
analysis or the specific radiomics signature is typically expressed
as a numeric value (the predicted probability of the target condi-
tion being met) and may be regarded as a quantitative imaging
biomarker [32].

In clinical practice radiomics may be used for virtually any use
case such as distinguishing malignant from benign breast lesions,
the prediction of patient outcome, tumor biology, and response to
neoadjuvant chemotherapy and examples from the literature are
highlighted in ▶ Fig. 2, 3 [36, 40–43].

Artificial intelligence

Next to radiomics, artificial intelligence (AI) is the emerging topic
in radiology [44–48]. Both methods aim at processing informa-
tion otherwise hidden from human interpretation and may be
used in combination [44, 49]. Just like radiomics, AI can be used
for virtually any clinical use ranging from distinguishing malignant
from benign breast lesions to the prediction of direct patient out-
come [44, 50, 51]. Yet, unlike radiomics, the definition of AI is
rather vague. This might be due to the fact that the term (non-ar-
tificial) “intelligence” already lacks a generally accepted definition
[52]. So commonly, AI is used as an umbrella term, summarizing
various disciplines of computer science, all of which aim to mimic
certain cognitive functions and can be as simple as basic multivari-
able classification algorithms [44–47].

In breast imaging the most investigated subdiscipline of super-
vised AI is machine learning [44]. Without being explicitly pro-
grammed, machine learning algorithms aim to detect (“learn”)
patterns in imaging data and to link these imaging characteristics
to tissue characteristics [44, 46]. A large variety of methods be-
long to the machine learning family, such as artificial neural net-
works (ANNs), support vector machines (SVMs), but also classic
statistical procedures, such as decision trees and regression anal-
ysis [46]. Each method provides inherent advantages and has
been successfully applied to breast imaging research [14, 33, 53,
54].

Without any doubt, AI in breast imaging goes far beyond su-
pervised machine learning. Further pivotal AI methods such as un-
supervised learning and deep learning have already shown high
promise for the future development of our field [44, 49, 55–57].
The complexity and importance of this topic call for a dedicated
publication summarizing the state of the art of AI in breast ima-
ging [18, 44, 51].

▶ Fig. 2 Application of radiomics and AI to improve the diagnostic
accuracy of breast imaging. Stelzer et al. examined the radiomic
signatures of microcalcifications in 235 patients [69]. All findings
were assessed as suspicious in conventional visual analysis (BI-RADS
IV) and therefore bioptically confirmed. A basic radiomic workflow
was applied starting with marking of a region (dashed lines) of
interest for data extraction, selection of radiomic features, building
and testing the radiomics model. As a result, the authors received a
specific radiomic signature, based upon which a biopsy could be
safely omitted in up to 45.7 % of the patients. Shown are BI-RADS IV
findings correctly classified as benign (A: benign papilloma without
atypia; B: fibrocystic changes) or malignant based on the radiomic
signature (C: invasive ductal cancer, D: ductal carcinoma in situ).
Results are available in real time, not requiring additional imaging
or invasive procedures. Therefore, radiomic signatures may be
considered accurate, workflow-friendly, and cost effective which is
why they provide value to patient care (modified and reprinted with
permission [69]).

▶ Abb.2 Stelzer et al. untersuchten die radiomischen Signaturen
von Mikroverkalkungen in 235 Patienten [69]. Alle Befunde wurden
in der konventionellen visuellen Analyse (BI-RADS IV) als verdächtig
bewertet und daher bioptisch bestätigt. Es wurde ein Basis-Work-
flow angewandt, der mit der Markierung einer für die Datenextrak-
tion interessanten Region (gestrichelte Linien), der Auswahl der
radiomischen Merkmale, dem Aufbau und der Prüfung des radio-
mischen Modells begann. Als Ergebnis erhielten die Autoren eine
spezifische radiomische Signatur, auf deren Grundlage bei bis zu
45,7 % der Patienten eine Biopsie sicher vermieden werden konnte.
Dargestellt sind BI-RADS-IV-Befunde, die anhand der radiomischen
Signatur korrekt als gutartig (A: gutartiges Papillom ohne Atypie;
B: fibrozystische Veränderungen) oder bösartig klassifiziert wurden
(C: invasiv duktales Karzinom, D: duktales Karzinom in situ). Die
Ergebnisse liegen in Echtzeit vor und erfordern keine zusätzliche
Bildgebung oder invasive Verfahren. Daher können radiomische
Signaturen als genau, Workflow-freundlich und kosteneffektiv
angesehen werden, weshalb sie für die Patientenversorgung rele-
vant sind (modifiziert und mit Genehmigung nachgedruckt [69]).
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▶ Fig. 3 a Application of radiomics to improve risk stratification of breast cancer patients. Extracts of the radiomics workflow-based breast MRI
data are displayed above. Volumetric analysis of dynamic enhancement parameters was performed providing surrogates of tumor heterogeneity
and cancer vascularity [17]. Such MRI derived parameters are closely linked to pathophysiology, facilitating interpretation of the radiomic model,
a step not always feasible with classic texture parameters. The resulting radiomic signature was integrated into an established prognostic model
(Nottingham prognostic index: NPI) yielding NPI+. Upon benchmarking analysis of NPI versus NPI+, the additive benefit of the radiomic signature is
evident. Corresponding Kaplan Meier curves illustrate a better risk stratification of NPI+ compared to standard NPI (modified and reprinted with
permission [17]). b Application of radiomics to improve risk stratification of breast cancer patients (benchmarking analysis).

▶ Abb.3 aOben werden Auszüge aus den auf dem Radiomics Workflow basierenden MRI-Daten der Brust dargestellt. Es wurde eine volumetrische
Analyse dynamischer Anreicherungsparameter durchgeführt, die Surrogate der Tumorheterogenität und der Krebsvaskularität liefert [17]. Solche
Parameter sind eng mit der Pathophysiologie verbunden und erleichtern die Interpretation des radiomischen Modells; ein Schritt, der mit klassi-
schen Texturparametern nicht immer möglich ist. Die resultierende radiomische Signatur wurde in ein etabliertes Prognosemodell (Nottingham
Prognostic Index, NPI) integriert und ergab NPI+. Nach Benchmarking-Analyse von NPI versus NPI+ wird der additive Nutzen der radiomischen
Signatur deutlich. Die Kaplan-Meier-Kurven veranschaulichen dort eine bessere Risikostratifizierung von NPI+ im Vergleich zu Standard-NPI
(modifiziert und nachgedruckt mit Genehmigung [17]). b Anwendung von Radiomics zur Verbesserung der Risikostratifizierung von Brustkreb-
spatientinnen (Benchmarking Analyse).
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Current status and future development:
A modality-based approach

Mammography

The idea of using computer algorithms to process mammogra-
phy-derived imaging data is not as new as it seems. In fact, this
research topic has been investigated since the 1980s [58]. The
first studies on computer-aided detection (CAD) systems aimed
at supporting the radiologist in the early detection of breast can-
cer on digital mammography. However, the widespread use of
these systems was initially limited by their low specificity and
high number of false-positive findings, which reduced the positive
effect on the screening readings [59]. The introduction of ad-
vanced AI methods and the availability of large databases togeth-
er with the framework of international multireader studies re-
shaped and improved the performance of CAD systems [60].

Lesion characterization

Recent studies showed that AI-based systems may have a per-
formance not inferior to that of experienced breast radiologists
[60, 61]. Instead of completely replacing the human reader, AI
might also be used to switch from double reading to single reading
in screening. In this setting the second reader will be substituted
by AI [50]. Another promising clinical use case of AI is to triage
screening mammograms as cancer-free. In this scenario, AI might
potentially reduce the radiologist’s workload and gain extra time
for the read of more cases and/or the assessment of challenging
cases [5, 62, 63]. Furthermore, the same algorithms applied for
mammography seem to perform equally well for digital breast to-
mosynthesis (DBT). This finding might be essential for reducing
the increased workload related to the use of DBT for instance in
screening [64, 65].

Irrespective of these encouraging results, a long list of metho-
dological, empirical, ethical, and forensic issues needs to be
solved [66, 67]. Accordingly, we do not expect these systems to
completely replace radiologists in the foreseeable future. More-
over, the most realistic use in the diagnostic setting is the applica-
tion of radiomics and AI as decision support tools in the assess-
ment for instance in challenging cases, such as the assessment of
microcalcifications and BI-RADS IV lesions as demonstrated in
▶ Fig. 2 [68, 69].

Beyond lesion characterization

Increased breast density is a factor that increases the risk of miss-
ing a cancer on mammography, due to tissue superimposition,
and also is among the most important risk factor for developing
breast cancer [3]. Historically breast density has been evaluated
in a semi-quantitative manner using the American College of
Radiology Breast Imaging Reporting and Data System [24]. De-
spite the overall good inter-reader agreement in the assessment
of breast density with this semiquantitative method [25], a more
accurate and repeatable evaluation of density might improve and
standardize the identification of women with dense breast tissue
and a subsequently increased risk of breast cancer [26]. Several
machine learning-based methods have been developed in the

last years, and several studies have shown an association between
breast cancer risk and breast density measured using these auto-
mated devices [27]. These automated calculations are still subject
to variation related to image acquisition (i. e., compression),
vendor, and other physical properties [28], but provide a reliable
tool for a standardized and repeatable evaluation of breast density
[26, 27].

Beyond the assessment of breast density, radiomics and AI may
also predict lymph node metastasis and HER2neu status [35, 36,
40, 42]. Notably, the additional information derived from the
application of an intravenous contrast agent seems to be able to
further improve the performance of these algorithms warranting
future investigation [36, 40].

Ultrasound

Breast ultrasound (US) is a valuable adjunct to mammography,
with a high sensitivity for breast cancer [70]. With the use of
advanced techniques, besides B-mode, a US examination can pro-
vide information about further tissue properties, such as stiffness
(elastography) or vascularity (Doppler, contrast-enhanced US
(CEUS)). Radiomics features can be extracted from all these tech-
niques, not only in order to differentiate benign from malignant
lesions, but also to identify factors with a prognostic and/or pre-
dictive value for breast cancer.

Lesion characterization

Attempts to use breast US for the extraction of radiomic data be-
gun in the early ‘90 s with the performance of texture analysis
studies and yielded good results for the distinction of benign
from malignant breast lesions. Already in 1993, Garra et al.
achieved a sensitivity of 100% and a specificity of 73 % by using
textural features derived from co-occurrence matrices [71]. Initial
attempts aimed at the development of CAD systems, which at
that time demonstrated an increase in sensitivity at the cost of a
decreased specificity, especially for experienced readers [72].

Advances in artificial intelligence methods during the last dec-
ade allowed for more sophisticated use of US-based radiomic
data. Marcon et al. applied a machine learning algorithm to tex-
tural features acquired from automated breast ultrasound and
achieved an accuracy of 90.7 % for the differentiation of benign
from malignant lesions [73]. Lee et al. developed a radiomics
score for the discrimination of fibroadenomas from triple-nega-
tive carcinomas, which demonstrated an AUC of up to 0.853, not-
ing however that the performance of the score was dependent on
the type of US machine used [41].

Several attempts have been made to apply radiomics to ad-
vanced US techniques in order to improve lesion characterization.
Zhang Q. et al. used radiomics features derived from strain elasto-
graphy examinations and coined the term “sonoelastomics” [74].
In their study, seven such features achieved an AUC of 0.917 for
the identification of breast malignancies. A more recent study by
Zhang X. et al. compared deep-learning based radiomics scores
acquired from B-mode US and shear-wave elastography (SWE)
with the results of the BI-RADS assessment and quantitative SWE
parameters and found a significant increase in the diagnostic per-
formance by using radiomics scores, reaching an AUC of 1 for both
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[75]. On the preclinical level, Theek et al. performed a radiomics
analysis of CEUS data from different mouse tumor models, achiev-
ing correct classifications in 82.1 % of cases [76].

Irrespective of these encouraging results and similar to mam-
mography, ultrasound-derived radiomics is unlikely to replace the
human reader in the near future and the biggest clinical advan-
tage is to be expected with respect to decision support [77].

Beyond lesion characterization

Several attempts have been made to identify breast cancer-relat-
ed imaging biomarkers based on US-derived radiomics features.
Guo et al. reported that different molecular subtypes of breast
cancer show differences in several radiomics features [78]. In their
study, triple-negative carcinomas could be distinguished from
other subtypes with an AUC of 0.760, based on a feature combi-
nation. On the other hand, a series of studies have focused on the
prediction of axillary lymph node metastases in breast cancer
patients [49, 79]. Yu et al. developed a nomogram combining US
radiomics and clinical features, which could accurately predict the
lymph node status with an AUC of 0.81 [80], while Zheng et al.
was able to accurately distinguish between a high and a low axil-
lary burden using a combination of clinicopathologic data and
radiomics features derived from B-mode US and SWE [55].

Challenges and perspectives of US-based radiomics

Although US is routinely implemented in breast diagnostics, its
use for radiomics studies clearly lags behind that of other modal-
ities, such as MRI or mammography [38]. One of the main reasons
is the inherent high inter-examiner variability of US images. US
image quality depends on both the acquisition process as well as
the examiner’s experience while there is also substantial variabil-
ity between different US devices, as has also been demonstrated
by different studies. Moreover, the quality of US images is usually
further reduced due to the presence of noise and artifacts. Finally,
there is a paucity of large publicly available, labeled, anonymized
datasets that would be mandatory for radiomics studies. Keeping
these limitations in mind, breast US with its ubiquitous presence,
its practicality, and the possibility to acquire a multitude of differ-
ent morphological and functional information at a low cost has
significant potential for application in the definition of breast
tumors radiomic signatures and may thus play a substantial role
in precision medicine.

PET

Positron emission tomography (PET)-CT with fluorodeoxyglucose
(18F-FDG) is mostly indicated for inconclusive CT findings and
high-risk patients and plays only an ancillary role in the staging
of breast cancer [81]. Yet, after the introduction of PET-MRI, the
interest in PET for local and distant breast cancer staging has in-
creased.

Local Staging

The use of 18F-FDG PET-MRI has been proposed for local staging
in women with breast cancer, but the additional information
derived from the PET examination was only marginal in the first

studies [82, 83]. Further analysis showed that MRI and PET-
derived data could yield relevant additional information. In partic-
ular, several studies applied radiomics to the PET-MRI images of
the breast and proved that AI could be used to characterize breast
lesions and define tumor aggressiveness [84]. Similar to breast
density in mammography, background parenchymal enhance-
ment and background parenchymal uptake may be regarded as
potential imaging biomarkers for breast cancer incidence [85].
Texture analysis and radiomics could also play a role in the evalu-
ation of tumor aggressiveness as well in the prediction of
response to neoadjuvant chemotherapy [86–88]. However, only
few single center studies are available on PET MRI-derived ima-
ging biomarkers for local breast cancer staging. More research in
this field is needed.

Distant Staging

PET-MRI is currently rarely used for whole-body staging of newly
diagnosed breast cancer. Increasing evidence suggests that the
examination could improve sensitivity, as compared to PET-CT,
but the limited availability and the high costs of the examination
suggest that careful patient selection is warranted [89]. Currently,
no large studies have been performed using AI to detect or char-
acterize distant metastasis in patients with breast cancer, but ani-
mal studies suggest that the combined information fromMRI, PET
and AI could improve the early detection of metastasis [90].

MRI

Lesion characterization

In 2003, Gibbs et al. reported the potential of quantitative multi-
variate texture analysis to distinguish benign from malignant
lesions in breast MRI [91]. This paper anticipated the key concepts
of lesion characterization by breast MRI radiomics by many years
and key results have been validated ever since [32, 54, 92–95].

For instance, machine learning was used to generate the Kaiser
score. Based on qualitative BI-RADS MRI descriptors, the Kaiser
score is a typical ordinal imaging biomarker. It allows estimation
of the individual likelihood of breast cancer and specific underly-
ing tumor biology [54, 96]. Results have been validated by multi-
ple centers in different clinical scenarios, underlining the potential
of AI-derived decision support in clinical patient management (for
instance [94]).

Whereas the Kaiser score is based on visually extracted qualita-
tive features, numerous authors investigated quantitative features
for breast MRI lesion characterization [92, 93, 95]. Yielding similar
results compared to the Kaiser score, Parekh and Jacobs devel-
oped a radiomic framework using advanced machine learning
and multiparametric MRI. In a cohort of 124 patients, they were
able to semiautomatically distinguish benign from cancerous le-
sions achieving an AUC≤ 0.91 [95]. As small lesions in breast MRI
can be difficult to characterize by visual analysis [97], Gibbs et al.
investigated radiomics signatures to characterize subcentimeter
breast lesions. Applying support vector machine analysis, authors
reported AUC levels ranging from 0.75–0.81 [93].

Benchmarking analysis refers to the comparison of radiomics
and AI results with an established gold standard (see ▶ Fig. 3)
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[98–100]. Unlike many researchers (e. g. [93, 95]), Bickelhaupt et
al. included a benchmarking analysis in a pivotal paper on radio-
mics signatures derived from diffusion MRI. The authors report
promising performance of the radiomics models (AUC ≤ 0.85),
which were, however, clearly outperformed by human readers
(AUC = 0.96) [92]. Such benchmarking analysis enables us to esti-
mate the practical value of radiomics and AI in the clinic by provid-
ing context. Consequently, benchmarking is considered manda-
tory for clinical validation of novel imaging biomarkers [98–100].

Beyond lesion characterization

Breast MRI seems ideally suited for imaging biomarker research,
as it provides comprehensive multiparametric data on pathophy-
siological tumor characteristics [15, 34, 101, 102]. Consequently,
a large number of papers are available, demonstrating the predic-
tive and prognostic potential of radiomics and/or AI-derived MRI
analysis [9, 101].

Prediction of treatment response is pivotal in the management of
breast cancer and radiomics. Granzier et al. summarized the
literature on breast cancer response prediction to neoadjuvant
systemic therapy using MRI-based radiomics. The authors report
a high diagnostic accuracy for this diagnostic task (AUC ≤ 0.94)
[15]. The prediction of therapy response also depends on the
receptor status of the breast cancer [103]. In this respect, the
results of Wu et al. are remarkable. They were able to predict the
molecular subtype based on BI-RADS features in a multi-modal
radiomics analysis (f1-score < 87.9 %) [101]. Based on steroid re-
ceptor status, HER2neu status, and ki67 analysis, the molecular
subtype has significant prognostic and predictive power and sig-
nificantly influences the choice of therapy for breast cancer, which
is why the results of Wu et al. are clinically relevant [101, 103].

One of the most important prognostic factors for patient out-
come is lymph node status [19]. Based on visually extracted MRI
descriptors, artificial intelligence may be able to identify MRI pat-
terns suggestive of lymph node metastases [33, 37]. Continuing
this early research, Liu et al. investigated quantitative radiomics
for the prediction of sentinel lymph node metastasis. The diag-
nostic accuracy exceeded the level achievable with qualitative
features (AUC = 0.74 vs. 0.81) [33, 102]. Notably Liu et al. could
further improve the radiomics model by integrating clinicopatho-
logical biomarkers (AUC = 0.81 vs. 0.87) [102].

Multigene assays represent advanced prognostic and predictive
biomarkers of breast cancer. A disadvantage of this approach are
the high costs, which is why Bhargava et al. propose alternative
methods to safely forgo multigene assays [104]. According to the
results of Li et al., MRI radiomics correlate to a certain extent with
commercially available multigene assays (r = 0.5–0.56) [105]. In
analogy to the approach of Bhargava et al., MRI radiomics could
also be used to select patients that would benefit from an ad-
vanced multi-gene assay [104, 105].

Already in 2003, Boné et al. reported that the combined analy-
sis of qualitative enhancement pattern can predict disease-free
survival of breast cancer [106]. Results have since been reproduced
by many authors such as Kim et al., Pickles et al., and Baltzer et al.

using various radiomics methods and study endpoints (disease-
free, recurrence-free survival, and overall survival) [17, 43, 107,
108]. Some authors benchmarked MRI-derived imaging biomar-
kers with established prognosis tools [17, 106]. By benchmarking
MRI-derived radiomics with the Nottingham prognostic index
(NPI), we could demonstrate that our prognostic radiomics model
performed equally well in predicting overall survival of breast can-
cer patients. More important, the combined analysis of MRI radio-
mics and the NPI improved the predictive accuracy. These findings
underline the potential of creating synergistic effects, if biomar-
kers are used in combination [17].

Discussion and conclusions

Considering radiological examinations not as mere images but as
a source of data has become the key paradigm in the diagnostic
imaging field. This change of perspective allows radiologists to
apply methods derived from computer science, to realize innova-
tive clinical applications, and to refine already established meth-
ods. In this context, the terms “imaging biomarker”, “radiomics”,
and “artificial intelligence” are of pivotal importance. These meth-
ods promise noninvasive, low-cost (e. g. in comparison to multi-
gene arrays) and workflow-friendly (automated, only one exami-
nation, instantaneous results) delivery of clinically relevant
information [38]. For all areas of breast imaging, exemplary stud-
ies were highlighted reporting a variety of clinical use cases. Ulti-
mately, these data may provide value by optimizing patient
management by guiding individualized breast cancer diagnosis
and treatment in the age of precision medicine.

Yet, a closer look into the literature shows that there are expec-
tations regarding promising technologies that are unlikely to be
fulfilled in the foreseeable future [109, 110]. In order to close the
remaining research gaps, considerable efforts from the scientific
community are necessary. However, the successful translation of
this new imaging paradigm into clinical action requires much
more than empirical evidence.

Many stakeholders are making claims on the field such as mass
media, patients, and colleagues from non-radiological disciplines
and the industry. Taking the lead in this innovation process goes
far beyond the role of individual research institutions. It requires
communication strategies, joint research projects between aca-
demia and vendors, and educational formats accessible to large
radiological societies. We are convinced that only in this way can
radiomics and AI be translated into the clinical routine and
develop their promising advantage in order to improve patient
care. In breast cancer diagnosis and treatment, we have highligh-
ted typical workflow steps that would benefit from these new
tools, providing value by improved selection of diagnostic tools
and therapeutic strategies.
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