Klin Monbl Augenheilkd 2021; 238(10): 1092-1097
DOI: 10.1055/a-1340-0066
Klinische Studie

Assessment of Retinal Neurodegeneration and Choroidal Thickness in COVID-19 Patients Using Swept-Source OCT Technology

Bewertung der retinalen Neurodegeneration und der choroidalen Dicke bei COVID-19-Patienten unter Verwendung der Swept-Source-OCT-Technologie
Tugba Cetinkaya
1   Ophthalmology, Samsun Education and Research Hospital, Samsun, Turkey
,
Muhammed M. Kurt
1   Ophthalmology, Samsun Education and Research Hospital, Samsun, Turkey
,
2   Ophthalmology, Sisli Hamidiye Etfal Egitim ve Arastirma Hastanesi, Istanbul, Turkey
› Author Affiliations

Abstract

Purpose To analyze the central macular thickness (CMT), retinal nerve fiber layer thickness (RNFLT), ganglion cell layer thickness (GCLT), and choroidal thickness (ChT) measurements in patients with coronavirus disease 2019 (COVID-19).

Methods The study was conducted cross-sectionally 4 weeks after the completed treatment of COVID-19. The diagnosis of COVID-19 was based on the polymerase chain reaction test and/or clinical and radiological findings. The patients with treated COVID-19 were enrolled in the COVID-19 group; age- and sex-matched healthy participants served as the control group. All patients in the COVID-19 group were hospitalized and treated with favipiravir, moxifloxacin, and heparin without the requirement for intubation. The measurements of CMT, RNFLT (in four quadrants), GCLT (in six sectors of two different boundaries), and ChT (in five locations) were performed by swept-source optical coherence tomography (SS-OCT).

Results Similar visual acuity (p = 0.582) and intraocular pressure (p = 0.766) values were observed between the COVID-19 and control groups. Regarding SS-OCT measurements, all mean CMT, RNFLT (in four quadrants), GCLT (in six sectors of two different boundaries), and ChT (in five locations) values were similar in the COVID-19 and control groups (p > 0.05 for all). In the COVID-19 group, a statistically significant negative correlation was noted between the mean ferritin level and temporal RNFLT (r = − 0.378, p = 0.014) and a positive correlation was observed between the mean ferritin level and nasal RNFLT (r = + 0.371, p = 0.016).

Conclusion SS-OCT measurements showed no retinal neurodegenerative and choroidal thickness alterations in COVID-19 patients. Nonsignificant results might be due to the examination of the patients in the early period of the COVID-19 after the treatment. Therefore, late period OCT measurements should be reviewed with new studies in the future.

Zusammenfassung

Zweck Analyse der Dicke der zentralen Makuladicke (CMT), der Netzhautnervenfaserschichtdicke (RNFLT), der Ganglienzellschichtdicke (GCLT) und der Aderhautdicke (ChT) bei Patienten mit Coronavirus-Krankheit 2019 (COVID-19).

Methoden Die Studie wurde 4 Wochen nach Abschluss der Behandlung mit COVID-19 im Querschnitt durchgeführt. Die Diagnose von COVID-19 basierte auf dem Polymerasekettenreaktionstest und/oder klinischen und radiologischen Befunden. Die Patienten mit behandeltem COVID-19 wurden in die COVID-19-Gruppe aufgenommen, wobei alters- und geschlechtsangepasste gesunde Teilnehmer als Kontrollgruppe dienten. Alle Patienten in der COVID-19-Gruppe wurden ins Krankenhaus eingeliefert und mit Favipiravir, Moxifloxacin und Heparin behandelt, ohne dass eine Intubation erforderlich war. Die Messungen CMT, RNFLT (in 4 Quadranten), GCLT (in 6 Sektoren mit 2 verschiedenen Grenzen) und ChT (an 5 Orten) wurden mittels optischer Kohärenztomografie (SS-OCT) mit Swept-Source durchgeführt.

Ergebnisse Zwischen der COVID-19- und der Kontrollgruppe wurden ähnliche Werte für Sehschärfe (p = 0,582) und Augeninnendruck (p = 0,766) beobachtet. In Bezug auf SS-OCT-Messungen waren alle mittleren CMT-, RNFLT- (in 4 Quadranten), GCLT-Werte (in 6 Sektoren mit 2 verschiedenen Grenzen) und ChT-Werte (an 5 Stellen) in der COVID-19- und Kontrollgruppe ähnlich (p > 0,05 für alles). In der COVID-19-Gruppe wurde eine statistisch signifikante negative Korrelation zwischen dem mittleren Ferritinspiegel und der temporalen RNFLT (r = − 0,378, p = 0,014) und eine positive Korrelation zwischen dem mittleren Ferritinspiegel und der nasalen RNFLT festgestellt (r = + 0,371, p = 0,016).

Schlussfolgerung SS-OCT-Messungen zeigten bei COVID-19-Patienten keine Veränderungen der neurodegenerativen und choroidalen Dicke der Netzhaut. Statistisch nicht signifikante Ergebnisse können auf die Untersuchung der Patienten in der frühen Phase des COVID-19 nach der Behandlung zurückzuführen sein. Daher sollten spätere OCT-Messungen in Zukunft mit neuen Studien überprüft werden.



Publication History

Received: 31 October 2020

Accepted: 16 December 2020

Article published online:
14 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zhu N, Zhang D, Wang W. et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 283: 727-733
  • 2 Guan WJ, Ni ZY, Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382: 1708-1720
  • 3 Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed 2020; 91: 157-160
  • 4 Lu R, Zhao X, Li J. et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395: 565-574
  • 5 Marietta M, Ageno W, Artoni A. et al. COVID-19 and haemostasis: a position paper from Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus 2020; 18: 167-169
  • 6 Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323: 1239-1242
  • 7 Becker R. COVID-19 update: Covid-19 associated coagulopathy. J Thromb Thrombolysis 2020; 50: 54-67
  • 8 Hoffmann M, Kleine-Weber H, Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271-280
  • 9 Klok FA, Kruip MJHA, van der Meer NJM. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-147
  • 10 Huang C, Wang Y, Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506
  • 11 Wu P, Duan F, Luo C. et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei province, China. JAMA Ophthalmol 2020; 138: 575-578
  • 12 Marinho PM, Marcos AAA, Romano AC. et al. Retinal findings in patients with COVID-19. Lancet 2020; 395: 1610
  • 13 Paniz-Mondolfi A, Bryce C, Grimes Z. et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol 2020; 92: 699-702
  • 14 Bullen CK, Hogberg HT, Bahadirli-Talbott A. et al. Infectability of human BrainSphere neurons suggests neurotropism of SARS-CoV-2. ALTEX 2020; 37: 665-671 doi:10.14573/altex.2006111
  • 15 Moriguchi T, Harii N, Goto J. et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 2020; 94: 55-58
  • 16 Kanberg N, Ashton NJ, Andersson LM. et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 2020; 95: e1754-e1759
  • 17 Li Y, Bai W, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020; 92: 552-555
  • 18 Strain WD, Chaturvedi N. The renin-angiotensin-aldosterone system and the eye in diabetes. J Renin Angiotensin Aldosterone Syst 2002; 3: 243-246
  • 19 Casagrande M, Fitzek A, Püschel K. et al. Detection of SARS-CoV-2 in human retinal biopsies of deceased COVID-19 patients. Ocul Immunol Inflamm 2020; 28: 721-725
  • 20 Lauermann P, Storch M, Weig M. et al. There is no intraocular affection on a SARS-CoV-2 – Infected ocular surface. Am J Ophthalmol Case Rep 2020; 20: 100884 doi:10.1016/j.ajoc.2020.100884
  • 21 Wang K, Chen W, Zhou YS. et al. SARS-CoV-2 invades host cells via a novel route: CD147- spike protein. BioRxiv 2020; 5: 238 doi:10.1101/2020.03.14.988345
  • 22 Hamashima K, Gautam P, Lau KA. et al. Potential modes of COVID-19 transmission from human eye revealed by single-cell atlas. BioRxiv 2020; DOI: 10.1101/2020.05.09.085613.
  • 23 Hamming I, Timens W, Bulthuis MLC. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631-637
  • 24 Gavriilaki E, Brodsky RA. Severe COVID-19 infection and thrombotic microangiopathy: success does not come easily. Br J Haematol 2020; 189: e227-e230
  • 25 Marinho PM, Marcos AAA, Romano AC. et al. Retinal findings in patients with COVID-19. Lancet 2020; 395: 1610
  • 26 Vavvas DG, Sarraf D, Sadda SR. et al. Concerns about the interpretation of OCT and fundus findings in COVID-19 patients in recent Lancet publication. Eye (Lond) 2020; 34: 2153-2154
  • 27 Virgo J, Mohamed M. Paracentral acute middle maculopathy and acute macular neuroretinopathy following SARS-CoV-2 infection. Eye (Lond) 2020; 34: 2352-2353
  • 28 Insausti-Garcia A, Reche-Sainz JA, Ruiz-Arranz C. et al. Papillophlebitis in a COVID-19 patient: inflammation and hypercoagulable state. Eur J Ophthalmol 2020; DOI: 10.1177/1120672120947591.
  • 29 Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm 2020; 28: 391-395
  • 30 Benito-Pascual B, Gegundez JA, Diaz-Valle D. et al. Panuveitis and Optic Neuritis as a Possible Initial Presentation of the Novel Coronavirus Disease 2019 (COVID-19). Ocul Immunol Inflamm 2020; 28: 922-925
  • 31 Savastano A, Crincoli E, Savastano MC. et al. Peripapillary Retinal Vascular Involvement in Early Post-COVID-19 Patients. J Clin Med 2020; 9: 2895
  • 32 Burgos-Blasco B, Guemes-Villahoz N, Donate-Lopez J. et al. Optic nerve analysis in COVID-19 patients. J Med Virol 2020; DOI: 10.1002/jmv.26290.
  • 33 Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm 2020; 28: 391-395
  • 34 Lee EJ, Kim SJ, Han JC. et al. Peripapillary retinal nerve fiber layer thicknesses did not change in long-term hydroxychloroquine users. Korean J Ophthalmol 2018; 32: 459-469
  • 35 Chen Y, Li J, Yan Y. et al. Diabetic macular morphology changes may occur in the early stage of diabetes. BMC Ophthalmol 2016; 16: 1-7
  • 36 Sohn EH, van Dijk HW, Jiao C. et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A 2016; 113: E2655-E2664
  • 37 Mesentier-Louro LA, Shariati MA, Dalal R. et al. Systemic hypoxia led to little retinal neuronal loss and dramatic optic nerve glial response. Exp Eye Res 2020; 193: 107957
  • 38 Coen M, Allali G, Adler D. et al. Hypoxemia in COVID-19; comment on: “The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients”. J Med Virol 2020; 92: 1705-1706 doi:10.1002/jmv.26020