Synthesis 2021; 53(09): 1605-1618
DOI: 10.1055/a-1337-5153
paper

Homogeneous Palladium-Catalyzed Selective Reduction of 2,2′-Biphenols Using HCO2H as Hydrogen Source

Ruoling Li
,
Chenchen Li
,
Wen Yang
,
Wanxiang Zhao
This project was supportedby National Natural Science Foundation of China (Grant Nos. 21702056, 21971059, and 21702055), Hunan Provincial Natural Science Foundation of China (Grant No. 2020JJ5040), National Program for Thousand Young Talents of China, and Fundamental Research Funds for the Central Universities.


Abstract

An efficient homogeneous palladium-catalyzed selective deoxygenation of 2,2′-biphenols by reduction of aryl triflates with HCO2H as the hydrogen source is reported. This protocol complements the current method based on heterogeneous Pd/C-catalyzed hydrogenation with hydrogen gas. This process provided the reduction products in good to excellent yields, which could be readily converted to various synthetically useful molecules, especially ligands for catalytic synthesis.

Supporting Information



Publication History

Received: 28 October 2020

Accepted after revision: 15 December 2020

Accepted Manuscript online:
15 December 2020

Article published online:
18 January 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a The Chemistry of Phenols . Rappoport Z. Wiley-VCH; Weinheim: 2003
    • 1b Engle KM, Luo S.-X, Grubbs RH. J. Org. Chem. 2015; 80: 4213
    • 1c Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 1d Gowrisankar S, Sergeev AG, Anbarasan P, Spannenberg A, Neumann H, Beller M. J. Am. Chem. Soc. 2010; 132: 11592
    • 1e Bymaster FP, Beedle EE, Findlay J, Gallagher PT, Krushinski JH, Mitchell S, Robertson DW, Thompson DC, Wallace L, Wong DT. Bioorg. Med. Chem. Lett. 2003; 13: 4477
    • 1f Narasimha K, Jayakannan M. Macromolecules 2016; 49: 4102
    • 1g Fuhrmann E, Talbiersky J. Org. Process Res. Dev. 2005; 9: 206
    • 2a Zhang J, Zhang Y, Geng S, Chen S, Liu Z, Zeng X, He Y, Feng Z. Org. Lett. 2020; 22: 2669
    • 2b Geng S, Zhang J, Chen S, Liu Z, Zeng X, He Y, Feng Z. Org. Lett. 2020; 22: 5582
    • 2c Russell JE. A, Entz ED, Joyce IM, Neufeldt SR. ACS Catal. 2019; 9: 3304
    • 2d Yue H, Zhu C, Rueping M. Org. Lett. 2018; 20: 385
    • 2e Wiensch EM, Montgomery J. Angew. Chem. Int. Ed. 2018; 57: 11045
    • 2f Chen Q, Wu A, Qin S, Zeng M, Le Z, Yan Z, Zhang H. Adv. Synth. Catal. 2018; 360: 3239
    • 2g Bisz E, Szostak M. ChemSusChem 2017; 10: 3964
    • 2h Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 2i Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 3a Vowinkel E, Wolf C. Chem. Ber. 1974; 107: 907
    • 3b Herrmann JM, König B. Eur. J. Org. Chem. 2013; 7017
    • 3c Sebok P, Timar T, Eszenyi T, Patonay T. J. Org. Chem. 1994; 59: 6318
    • 3d van Duzee EM, Adkins H. J. Am. Chem. Soc. 1935; 57: 147
    • 3e Maercker A. Angew. Chem., Int. Ed. Engl. 1987; 26: 972
    • 3f Cornella J, Gómez-Bengoa E, Martin R. J. Am. Chem. Soc. 2013; 135: 1997
    • 3g Tobisu M, Yamakawa K, Shimasaki T, Chatani N. Chem. Commun. 2011; 47: 2946
    • 3h Modak A, Maiti D. Org. Biomol. Chem. 2016; 14: 21
    • 3i Álvarez-Bercedo P, Martin R. J. Am. Chem. Soc. 2010; 132: 17352
    • 3j Cordova M, Wodrich M, Meyer B, Sawatlon B, Corminboeuf C. ACS Catal. 2020; 10: 7021
    • 3k Kogan V. Tetrahedron Lett. 2006; 47: 7515
    • 3l Wang X.-Y, Leng J, Wang S.-M, Asiri AM, Marwani HM, Qin H.-L. Tetrahedron Lett. 2017; 58: 2340
    • 3m Chen Q.-Y, He Y.-B, Yang Z.-Y. J. Chem. Soc., Chem. Commun. 1986; 1452
    • 3n Pan Y, Holmes CP. Org. Lett. 2001; 3: 2769
    • 4a Hsiao C, Hsiao G, Chen W, Wang S, Chiang C, Liu L, Guh J, Lee T, Chung C. J. Nat. Prod. 2014; 77: 758
    • 4b Zhang X, Zhao Y, Bai D, Yuan X, Cong S. J. Biochem. Mol. Toxicol. 2019; 33: e22301
    • 4c Brunel JM. Chem. Rev. 2005; 105: 857
    • 4d Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 4e Xu B, Shi L, Zhang Y, Wu Z, Fu L, Luo C, Zhang L, Peng Y, Guo Q. Chem. Sci. 2014; 5: 1988
    • 4f Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
    • 4g Wen W, Chen L, Luo M, Zhang Y, Chen Y, Ouyang Q, Guo Q. J. Am. Chem. Soc. 2018; 140: 9774
    • 4h Chen J, Gong X, Li J, Li Y, Ma J, Hou C, Zhao G, Yuan W, Zhao B. Science 2018; 360: 1438
    • 5a Kočovský P, Vyskočil Š, Smrčina M. Chem. Rev. 2003; 103: 3213
    • 5b Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
    • 5c Berthod M, Mignani G, Woodward G, Lemaire M. Chem. Rev. 2005; 105: 1801
    • 5d Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 5e Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
    • 5f Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
    • 5g Hayashi T. Acc. Chem. Res. 2000; 33: 354
    • 5h Shimada T, Mukaide K, Shinohara A, Han J, Hayashi T. J. Am. Chem. Soc. 2002; 124: 1584
    • 5i Morimoto T, Mochizuki N, Suzuki M. Tetrahedron Lett. 2004; 45: 5717
    • 5j Guan X.-Y, Jiang Y.-Q, Shi M. Eur. J. Org. Chem. 2008; 2150
    • 5k Jiang Y.-Q, Shi Y.-L, Shi M. J. Am. Chem. Soc. 2008; 130: 7202
    • 5l Cao Z, Liu Y, Liu Z, Feng X, Zhuang M, Du H. Org. Lett. 2011; 13: 2164
    • 5m Zhu Y, Buchwald SL. J. Am. Chem. Soc. 2014; 136: 4500
    • 5n Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 5o Takahashi I, Morita F, Kusagaya S, Fukaya H, Kitagawa O. Tetrahedron: Asymmetry 2012; 23: 1657
    • 5p Ma Y.-N, Yang S.-D. Chem. Eur. J. 2015; 21: 6673
  • 6 Ji W, Wu H.-H, Zhang J. ACS Catal. 2020; 10: 1548
    • 7a Ma Y.-N, Zhang H.-Y, Yang S.-D. Org. Lett. 2015; 17: 2034
    • 7b Rohde VH. G, Müller MF, Oestreich M. Organometallics 2015; 34: 3358
    • 7c Wang P, Wang J, Wang L, Li D, Wang K, Liu Y, Zhu H, Liu X, Yang D, Wang R. Adv. Synth. Catal. 2018; 360: 401
    • 7d Sasaki H, Irie R, Katsuki T. Synlett 1993; 300
    • 7e Ishihara K, Inanaga K, Kondo S, Funahashi M, Yamamoto H. Synlett 1998; 1053
    • 7f Cacchi S, Ciattini PG, Morera E, Ortar G. Tetrahedron Lett. 1986; 27: 5541
    • 8a Wang X, Li C, Wang X, Wang Q, Dong X, Duan A, Zhao W. Org. Lett. 2018; 20: 4267
    • 8b Wang X, Tang Y, Long C, Dong W, Li C, Xu X, Zhao W, Wang X. Org. Lett. 2018; 20: 4749
    • 8c Zhang W, Yang W, Zhao W. J. Org. Chem. 2020; 85: 8702
  • 9 Montgomery TP, Grandner JM, Houk KN, Grubbs RH. Organometallics 2017; 36: 3940
  • 10 Unoh Y, Hirano K, Miura M. J. Am. Chem. Soc. 2017; 139: 6106
  • 11 Baillie C, Xiao J. Tetrahedron 2004; 60: 4159
  • 12 Baba K, Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11892
  • 13 Wang D, Zhao Y, Yuan C, Wen J, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 12529
  • 14 Zhou QJ, Worm K, Dolle RE. J. Org. Chem. 2004; 69: 5147
  • 15 Uozumi Y, Suzuki N, Ogiwara A, Hayashi T. Tetrahedron 1994; 50: 4293
    • 16a Xue F, Hayashi D. Angew. Chem. Int. Ed. 2018; 57: 10368
    • 16b Yamamoto K, Shimizu T, Igawa K, Tomooka K, Hirai G, Suemune H, Usui K. Sci. Rep. 2016; 6: 36211
    • 16c Zhang T.-K, Mo D.-L, Dai L.-X, Hou X.-L. Org. Lett. 2008; 10: 3689
    • 16d Yamamoto T, Akai Y, Suginome M. Angew. Chem. Int. Ed. 2014; 53: 12785
  • 17 Dong C, Song T, Bai X.-F, Cui Y.-M, Xua Z, Xu L.-W. Catal. Sci. Technol. 2015; 5: 4755
  • 18 Lygo B, Butt U, Cormack M. Org. Biomol. Chem. 2012; 10: 4968
  • 19 Webbolt S, Maji MS, Irran E, Oestreich M. Chem. Eur. J. 2017; 23: 6213
  • 20 Yang Q, Ma S, Li J, Xiao F, Xiong H. Chem. Commun. 2006; 2495
  • 21 Odedra A, Wu C.-J, Pratap TB, Huang C.-W, Ran Y.-F, Liu R.-S. J. Am. Chem. Soc. 2005; 127: 3406
  • 22 Matt C, Kölblin F, Streuf J. Org. Lett. 2019; 21: 6983
  • 23 Wang P, Wang J, Wang L, Li D, Wang K, Liu Y, Zhu H, Liu X, Yang D, Wang R. Adv. Synth. Catal. 2018; 360: 401
  • 24 Mao R, Balon J, Hu X. Angew. Chem. Int. Ed. 2018; 57: 13624
  • 25 Stevens PD, Fan J, Gardimalla HM. R, Yen M, Gao Y. Org. Lett. 2005; 7: 2085
  • 26 Castelló LM, Hornillos V, Vila C, Giannerini M, Fañanás-Mastral M, Feringa BL. Org. Lett. 2015; 17: 62
  • 27 Adachi M, Sugasawa T. Synth. Commun. 1990; 20: 71