Synthesis 2021; 53(13): 2277-2285
DOI: 10.1055/a-1331-7285
paper

Highly Efficient Copper-Catalyzed Dehydrogenative Cross-Coupling of Azoles with α-Amino Carbonyl Compounds

Jiu-Jian Ji
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, 330013, P. R. of China
,
Zhi-Qiang Zhu
a   Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, P. R. of China
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, 330013, P. R. of China
,
Zong-Bo Xie
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, 330013, P. R. of China
,
Juan Tang
c   Ministry of Education Key Laboratory of Functional Small Organic Molecule, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. of China
,
En Yuan
d   College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. of China
,
Zhang-Gao Le
b   School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, 330013, P. R. of China
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (11765002 and 21966003), the Science Foundation for Excellent Young Scholars of Jiangxi Province (20202ZDB01003), the Key Project of Jiangxi Natural Science Foundation (20192ACB21001), the Postdoctoral Science Foundation of Jiangxi Province (2019KY40 and 2019KY41), the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, and the Innovation Fund Designated for Graduate Students of East China University of Technology (DHYC-201913) for financial support.


Abstract

A novel and highly efficient dehydrogenative cross-coupling­ reaction between α-amino carbonyl compounds and azoles by copper catalysis using di-tert-butyl peroxide (DTBP) as an oxidant is described­. A diverse range of azoles undergo the dehydrogenative imidoylation smoothly with various α-amino carbonyl compounds for the exclusive formation of the corresponding N-imidoyl azoles in high yields under air. The synthetic method has the advantages of good functional-group tolerance, wide substrate scope, excellent yields, and simple operation­, thus providing a convenient and practical protocol for the synthesis of functionalized azoles.

Supporting Information



Publication History

Received: 05 December 2020

Accepted after revision: 07 December 2020

Accepted Manuscript online:
07 December 2020

Article published online:
01 February 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hili R, Yudin AK. Nat. Chem. Biol. 2006; 2: 284
    • 1b Ricci A. Amino group chemistry: from synthesis to the life sciences. Wiley-VCH; Weinheim: 2008
    • 1c Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 2a Zhang L, Peng X.-M, Damu GL. V, Geng R.-X, Zhou C.-H. Med. Res. Rev. 2014; 34: 340
    • 2b Diez-Gonzalez S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
    • 2c Poyatos M, Mata JA, Peris E. Chem. Rev. 2009; 109: 3677
    • 2d Martins MA. P, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG. Chem. Rev. 2008; 108: 2015
    • 3a Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 3b Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 3c Waterman R. Chem. Soc. Rev. 2013; 42: 5629
    • 3d Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 3e Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 4a Sun K, Wang X, Liu L, Sun J, Liu X, Li Z, Zhang Z, Zhang G. ACS Catal. 2015; 5: 7194
    • 4b Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
    • 4c Lai T.-T, Xie D, Zhou C.-H, Cai G.-X. J. Org. Chem. 2016; 81: 8806
    • 4d Ovian JM, Kelly CB, Pistritto VA, Leadbeater NE. Org. Lett. 2017; 19: 1286
    • 5a Pan S, Liu J, Li H, Wang Z, Guo X, Li Z. Org. Lett. 2010; 12: 1932
    • 5b Xia Q, Chen W, Qiu H. J. Org. Chem. 2011; 76: 7577
    • 5c Xia Q, Chen W. J. Org. Chem. 2012; 77: 9366
    • 5d Aruri H, Singh U, Sharma S, Gudup S, Kumar MS, Singh D, Gupta VK, Kant R, Vishwakarma RA. J. Org. Chem. 2015; 80: 1929
    • 5e Yang Q, Lou M, Yin Z, Deng Z, Ding Q, Peng Y. Org. Biomol. Chem. 2018; 16: 8724
    • 5f Wu X, Qiao K, Qin H, Zhang D, Gao D, Yang Z, Fang Z, Guo K. Org. Chem. Front. 2019; 6: 2672
    • 6a Hunt S. Chemistry and Biochemistry of the Amino Acids . Barrett GC. Chapman and Hall; London: 1985: 55
    • 6b Williams RM. Synthesis of Optically Active α-Amino Acids. In Organic Chemistry Series. Pergamon; New York: 1989
    • 6c Polt RL. In Amino Acid Derivatives: A Practical Approach . Barrett GC. Oxford University Press; UK: 1999: 101
    • 6d Klingler FD. Acc. Chem. Res. 2007; 40: 1367
    • 7a Baktharaman S, Hili R, Yudin AK. Aldrichimica Acta 2008; 41: 109
    • 7b Concellon JM, Rodriguez-Solla H. Curr. Org. Chem. 2008; 12: 524
    • 9a Zhu Z.-Q, Bai P, Huang Z.-Z. Org. Lett. 2014; 16: 4881
    • 9b Zhu Z.-Q, Xie Z.-B, Le Z.-G. J. Org. Chem. 2016; 81: 9449
    • 9c Zhu Z.-Q, Xie Z.-B, Le Z.-G. Synlett 2017; 28: 485
    • 9d Zhu Z.-Q, Xiao L.-J, Chen Y, Xie Z.-B, Zhu H.-B, Le Z.-G. Synthesis 2018; 50: 2775
    • 9e Zhu Z.-Q, Xiao L.-J, Guo D, Chen X, Ji J.-J, Zhu X, Xie Z.-B, Le Z.-G. J. Org. Chem. 2019; 84: 435
    • 9f Zhu Z, Xiao L, Xie Z, Le Z. Chin. J. Org. Chem. 2019; 39: 2345
    • 9g Zhu Z.-Q, Guo D, Ji J.-J, Zhu X, Tang J, Xie Z.-B, Le Z.-G. J. Org. Chem. 2020; 85: 15062
    • 10a Wang Z.-Q, Hu M, Huang X.-C, Gong L.-B, Xie Y.-X, Li J.-H. J. Org. Chem. 2012; 77: 8705
    • 10b Gao X.-W, Meng Q.-Y, Li J.-X, Zhong J.-J, Lei T, Li X.-B, Tung C.-H, Wu L.-Z. ACS Catal. 2015; 5: 2391
    • 10c Ding W, Lu L.-Q, Liu J, Liu D, Song H.-T, Xiao W.-J. J. Org. Chem. 2016; 81: 7237
    • 10d Zhu Z.-Q, Xiao L.-J, Zhou C.-C, Song H.-L, Xie Z.-B, Le Z.-G. Tetrahedron Lett. 2018; 59: 3326
    • 10e Yang X, Xie Z, Li Y, Zhang Y. Chem. Sci. 2020; 11: 4741
    • 11a Wu J.-C, Song R.-J, Wang Z.-Q, Huang X.-C, Xie Y.-X, Li J.-H. Angew. Chem. Int. Ed. 2012; 51: 3453
    • 11b Liu X.-X, Wu Z.-Y, He Y.-Q, Zhou X.-Q, Hu T, Ma C.-W, Huang G.-S. Adv. Synth. Catal. 2016; 358: 2385
    • 11c Chen C, Zhu M, Jiang L, Zeng Z, Yi N, Xiang J. Org. Biomol. Chem. 2017; 15: 8134
    • 11d Wang P, Xiong Y, Qin Y, Zhang J, Yi N, Xiang J, Deng W. Catal. Commun. 2019; 131: 105766
    • 11e Liu X, Pu J, Luo X, Cui X, Wu Z, Huang G. Org. Chem. Front. 2018; 5: 361
    • 12a Li X, Zhao H, Chen X, Jiang H, Zhang M. Org. Chem. Front. 2020; 7: 425
    • 12b Hu Z, Kerton FM. Org. Biomol. Chem. 2012; 10: 1618
    • 12c Maity S, Manna S, Rana S, Naveen T, Mallick A, Maiti D. J. Am. Chem. Soc. 2013; 135: 3355
    • 12d Zhang B, Cui Y, Jiao N. Chem. Commun. 2012; 48: 4498
  • 13 Martinez-Ariza G, McConnell N, Hulme C. Org. Lett. 2016; 18: 1864