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Introduction

A simplified outline of fibrinolysis is presented in►Fig. 1 and
more detailed reviews can be found elsewhere.1,2 By neces-
sity, in response to vascular damage, coagulation must be
rapid to reduce the dangers of bleeding and prevent entry of
pathogenic microorganisms. Subsequently, fibrinolysis takes
place slowly under normal circumstances, over hours and
days as vessels are repaired. These considerations explain
why there are many relatively simple, rapid, well-standard-
ized tests to measure blood clotting, which can identify
defects in coagulation pathways. However, fibrinolysis is
more difficult to measure for diagnostic purposes and meth-
ods are more cumbersome, so the role of fibrinolysis in the
hemostatic balance may be underestimated.

Fibrinolysis assays are needed to study antifibrinolytic
therapy and also in the development and quality control
of thrombolytic drugs. Diverse approaches are available
to assess fibrinolysis in healthy or sick populations to
identify factors that may be involved in regulation
or dysregulation, and hyperfibrinolysis or fibrinolysis
resistance.

The National Institute for Biological Standards and Control
(NIBSC) is a World Health Organization (WHO) collaborating
center with the responsibility to generate, store and distribute
biological standards. A major part of our portfolio covers
diagnostic and drug-related standards in hemostasis, includ-
ing fibrinolysis3 and reviews on the ways in which our
biological standards can be used have been published
elsewhere.4,5
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Abstract Physiological fibrinolysis under normal conditions progresses slowly, in contrast to
coagulation which is triggered rapidly to stop bleeding and defend against microbial
invasion. Methods to detect fibrinolysis abnormalities are less simple and poorly
standardized compared with common coagulation tests. Fibrinolysis can be accelerat-
ed by preparing euglobulin from plasma to reduce endogenous inhibitors, or by adding
plasminogen activators to normal plasma. However, these manipulations complicate
interpretation of results and diagnosis of a “fibrinolysis deficit.” Many observational
studies on antigen levels of fibrinolysis inhibitors, plasminogen activator inhibitor 1 or
thrombin-activatable fibrinolysis inhibitor, zymogen or active enzyme have been
published. However, conclusions are mixed and there are clear problems with
harmonization of results. Viscoelastic methods have the advantage of being rapid
and are used as point-of-care tests. They also work with whole blood, allowing the
contribution of platelets to be explored. However, there are no agreed protocols for
applying viscoelastic methods in acute care for the diagnosis of hyperfibrinolysis or to
direct therapy. The emergence of SARS-CoV-2 and the dangers of associated coagul-
opathy provide new challenges. A common finding in hospitalized patients is high levels
of D-dimer fibrin breakdown products, indicative of ongoing fibrinolysis. Well-estab-
lished problemswith D-dimer testing standardization signal that we should be cautious
in using results from such tests as prognostic indicators or to target therapies.
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Assays for Thrombolytic Proteins

Thrombolytics such as tissue plasminogen activator (tPA) or
urokinase plasminogen activator (uPA) are serine proteases
that transform plasminogen into plasmin. Microbial plas-
minogen binding and activating proteins such as streptoki-
nase and staphylokinase have no intrinsic protease activity
but in practice, experimentally their reaction kinetics look
like other plasminogen activators and they can be analyzed
in the same way (although the details of the kinetic mech-
anisms may be complicated6). In practice, investigations on
enzyme mechanism and regulation, or determination of
specific activity or concentration will be performed in vitro
in purified systems of proteins, or in plasma-based systems
and can be optimized over a chosen thrombolytic enzyme
range to give themost robust results. Activities of fibrinolytic
proteins are often determined relative to the WHO Interna-
tional Standard as a primary calibrator.3 Examples are avail-
able in publications of the development of fibrinolysis as per
WHO International Standards (e.g., Locke et al7).

The simplest methods for following proteolytic activity
involve optical monitoring of amidolytic substrates made of
peptides linked to a chromophore or fluorophore. These
types of substrates are not so useful when used directly on

an enzyme of interest, but are valuable to study linked
reactions that generate plasmin, for example. Active-
site titration of serine proteases is a subgroup of
chromogenic/fluorogenic assays and is useful to establish
molar concentrations of active enzymes, including thrombo-
lytic enzymes and thrombin.8 Early fibrin-basedmethods for
measuring plasminogen activator activity used fibrin plates,
but have been superseded by microtiter plate-based meth-
ods.9 This approach can be adapted to internal lysis (inwhich
plasminogen activator is mixed with fibrinogen, plasmino-
gen and thrombin to form a clot that is subsequently lysed
evenly throughout), or external lysis (where activator is
added to the top of a preformed clot). Internal lysis is related
to normal hemostasis, while superficially added activator
more closely reflects the situation during thrombolytic
therapy. It is possible to combine fibrin-based methods
and chromogenic substrate-linkedmeasurement of plasmin-
ogen activation to precisely follow plasmin generation in the
presence of fibrin.10,11 In this way, rates of plasmin genera-
tion in SI units (e.g., pM/s) for tPA, uPA and streptokinase can
be compared in the same format. Comparison of WHO
assigned international units (IU) for these activators is not
so useful as the units are unrelated. The long-established
European Pharmacopoeia method for assaying alteplase

Fig. 1 Outline of the fibrinolysis system. The pathway of fibrin formation and degradation is shown by heavy arrows. Fibrin is a substrate (surface)
for reactions and a substrate (target for enzymes) for plasmin.1 Fibrin degradation products (FDP) are heterogeneous in size88 and expose
binding sites for D-dimer antibodies. Enzymes are in ovals and include the plasminogen activators, tissue plasminogen activator (tPA) and
urokinase plasminogen activator (uPA). tPA activity is stimulated by binding to fibrin, where the finger domain is dominant,11,89 whereas uPA is
generated from an inactive zymogen scuPA (not shown) by the action of plasmin. Serpin inhibitors, PAI-1 and α2-antiplasmin (α2-AP) form
inactive complexes to reduce fibrinolysis. Thrombin-activatable fibrinolysis inhibitor (TAFI, also known as procarboxypeptidase U, or CBP2 gene
product) is activated by thrombin (and plasmin, not shown), to the active form (TAFIa). This enzyme modifies fibrin (shown as Fibrin′) to remove
C-terminal lysines, which is less effective at binding plasminogen and plasmin and more resistant to lysis. TAFIa is thermally unstable and
degrades to an inactive form, shown as TAFIa′. Other components that are involved include α2-macroglobulin, a broad specificity inhibitor and
thrombomodulin which has a role in regulating the activation of TAFI.90 Additional factors that can impair fibrinolysis include variants of
fibrinogen such as γ′-fibrinogen which affects clot architecture and fibrinogen-binding sites to make more resistant clots91 and FXIII which
creates a more resistant clot by cross-linking fibrin chains and α2-AP to fibrin.92,93 The incorporation of cells into clots can also delay fibrinolysis.
Platelets cause clot retraction and release PAI-194; and red blood cells can interact with fibrin,95 and also become compressed during clot
retraction to form an impermeable barrier which delays clot lysis.96 PAI-1, plasminogen activator inhibitor 1.
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(tPA) activity,12 in which clot lysis time is determined by
passage of a ball through the clot in a tube or release of
trapped bubbles from the fibrin network, is simple and
reliable. More recently, the “Halo” method has been pub-
lished that uses a small volume of whole blood, clotted in a
ring or halo around the edge of amicrotiter-platewell.13 Lysis
is followed by monitoring increasing absorbance as the clot
breaks down and products released into solution.

Although it is relatively simple to generate reproducible
time courses of data to study the activity of thrombolytic
enzymes using these methods, the analysis of the resulting
data is the next challenge. It is common in fibrinolysis assays
to report lysis times, usually as time to 50% lysis, but how this
is calculated is not always explained. Alternatively, zymogen
activation rates determined with chromogenic substrates
require the use of time squared plots, which can be tedious
to generate and analyze. To standardize calculations of lysis
times and zymogen activation rates and improve reproduc-
ibility, several online apps have been developed and pub-
lished in association with ISTH/SSC (International Society on
Thrombosis and Haemostasis/Scientific and Standardization
Committee) Subcommittee on Fibrinolysis.14,15 These apps
are freely available and run in a computer browser without
downloading any software (see also Longstaff16 for summa-
ries, links to apps and detailed instructions).

Diagnostic Methods

Functional Tests
Functional tests begin with the problem mentioned above
that fibrinolysis without any stimulation is slow. To speed up
the process, it is common to either add tPA to plasma to
stimulate the generation of plasmin, or to remove inhibitors,
by for example preparing the euglobulin fraction from
plasma. A long-established functional method for measuring
fibrinolysis in subject samples is to determine euglobulin
clot lysis times (ECLTs), and this approach has been reviewed
previously.5,17,18 The general approach is time-consuming
and difficult to automate. The euglobulin fraction is reported
to have a greater than 90% reduction in α2-antiplasmin, but
there is also significant depletion of plasminogen activator
inhibitor 1 (PAI-1) and thrombin-activatable fibrinolysis
inhibitor (TAFI).19 It is observed that the ECLT is strongly
influenced by PAI-1 (and free tPA) concentrations. Recently
an updated method has been published20 where samples
received added fibrinogen and ovalbumin to increase the clot
turbidity. These authors also explored a fibrinolysis resis-
tance test using added tPA which identified samples with
high free active PAI-1, but also showed some sensitivity of
lysis times to TAFI levels.

When normal plasma is used to investigate fibrinolysis, it
is common to add significant amounts of extraneous tPA
(from 200 to 700 ng/mL, see Table 2 in Longstaff18). To
generate a clot, CaCl2 is added as a minimum, and often
thrombin and/or tissue factor (TF) with phospholipids may
also be used. Attempts have been made to establish a
standardized method for this procedure to improve repro-
ducibility.21Acommonly used output is 50% lysis timewhere

lysis is followed optically, and analysis can be facilitated by
online apps.14 A thorough review of data from clot lysis
studies has been presented to explore the relationship of
fibrinolytic potential and risk for arterial and venous throm-
bosis.22 Conclusions frommany studies are not always strong
or consistent in identifyingmolecular risk factors in different
populations. However, an important observation is that
hypofibrinolysis, especially in combination with hypercoag-
ulability, can constitute an increased thrombosis risk.

An interesting development in this area is methods to
simultaneously measure generation of both thrombin and
plasmin during plasma clotting and lysis.23 However, the
methods proposed so far (reviewed in Longstaff18) have not
become established, possibly because they are technically
difficult to perform and analyze and no commercial equip-
ment or software is available, in contrast to popular throm-
bin-generation platforms.

Antigen Assays
Antigen tests for plasma proteins involved in fibrinolysis are
common and relatively simple to perform, even in large
population studies. Many studies have been organized to
investigate variations in circulating tPA, PAI-1 and TAFI,
including free-active/inactive/latent and inhibited tPA–PAI-
1 complex forms, to look for associations with arterial or
venous thrombosis.24,25

Reduced levels of fibrinolysis inhibitors are not diagnosed
as often as coagulation deficiencies, but when found often
lead to increased bleeding risk.17 Alternatively, high circu-
lating PAI-1 and TAFI may indicate a “fibrinolysis deficit” and
thrombosis risk. There are many large-scale population
studies involving PAI-1 and TAFI, but results are not consis-
tent.26 Standardization of assay methods is poor in this area
and it is not possible to directly compare absolute values of
analytes from studies using different methods for PAI-1
antigen or activity or tPA antigen.27,28 Generally, elevated
PAI-1 is associated with cardiovascular disease, metabolic
syndrome, diabetes, obesity, senescence and as a prognostic
marker for several cancers.29 It is likely that harmonization of
results from different methods could be improved with
common standards.30,31 However, although there are WHO
International Standards for tPA antigen in plasma and PAI-1
activity, they are not so popular because they are labeled in
IU, while commercial methods report results in ng/mL.
Unfortunately, the origin of the commercial kit standards
is not consistent, and each “ng” is different. To establish a
firm basis for reported ng, we at NIBSC are pursuing isotope
dilution mass spectrometry using 13C-labeled recombinant
proteins as a way of establishing real gravimetric concen-
trations of plasma analytes. Work on TAFI and PAI-1 antigens
is underway. In addition to these considerations, pre-test
processing issues further complicate PAI-1 measurements
and make tPA activity measurements unreliable. Factors
such as diurnal and seasonal variations,32 and release of
PAI-1 from platelets during venepuncture must be consid-
ered.33 Historically, a source of variation in TAFI assays has
been the Thr325Ile polymorphism, which affects TAFI acti-
vation and stability.34,35 It has been proposed that TAFIa is a
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more important biomarker than zymogen,36 but measure-
ments require very sensitive methods.37–39

Interest in PAI-1 and TAFI as drug targets to modulate
hemostasis has raised awareness of the importance of robust
assay methods.40–42 The idea of inhibiting PAI-1 activity is
interesting in the context of aging as a mutation in the
SERPINE1 gene resulting in around 50% reduced circulating
PAI-1 is associated with longevity in animal models and a
population of Amish in the United States.43

Hyperfibrinolysis and Hypofibrinolysis

Moore and colleagues44 have attempted to define or clarify
different types of pathological fibrinolysis observed clinical-
ly, for instance in trauma but also in surgery and disseminat-
ed intravascular coagulation (DIC). In addition to
hyperfibrinolysis, there are varieties of fibrinolysis resis-
tance (classically identified in ECLT assays) including hypo-
fibrinolysis (a failure to trigger fibrinolysis after clotting) and
fibrinolysis shutdown (where there is a rebound of increased
PAI-1 activity and antigen after the triggering of coagulation
and early release of tPA). The timing of fibrinolysis resistance
and concepts such as occult fibrinolysis provide further
complications.44

Hyperfibrinolysis in acute situations such as trauma or
surgery is a life-threatening situation requiring rapid tests to
direct treatment such as plasma or clotting factor replace-
ments, or possibly with antifibrinolytics such as tranexamic
acid (TXA). Instances where markers of fibrinolysis are
elevated include trauma, DIC (where there is a fibrinolytic
phenotype),45 acute promyelocytic leukemia, liver damage,
congenital abnormalities and surgical procedures (reviewed
in Kolev and Longstaff17). Common markers for ongoing
fibrinolysis would be elevated D-dimer,46 raised tPA or
decreased PAI-1, reduced plasminogen, reduced α2-antiplas-
min and elevated plasmin-α2-antiplasmin (P-AP) complexes.
Assays for these proteins are time-consuming, with the
possible exception of point-of-care tests for D-dimer. How-
ever, D-dimer tests are approved for excluding thrombosis
and the accurate measurement of high D-dimer levels is
complicated by the low specificity of these tests and poor
standardization.47,48 Where hyperfibrinolysis is detected
there is a high risk of death. For instance, in trauma only a
minority of patients display a hyperfibrinolysis phenotype
but mortality in this group is very high.49,50 The underlying
fibrinolysis imbalance is likely dominated by an increase in
tPA resulting in plasmin generation with concomitant con-
sumption of inhibitors PAI-1 and α2-antiplasmin.51,52 The
potential for hyperfibrinolysis to be associated with throm-
botic complications has been highlighted previously.22

Viscoelastic methods potentially have a role in diagnosing
hyperfibrinolysis and fibrinolysis resistance as they are
capable of generating results more rapidly than other avail-
able methods.53 In particular, rapid thrombelastography (r-
TEG) has been developed to speed up clotting by stimulating
both intrinsic and extrinsic coagulation using kaolin and TF
activators, and making tests available in cartridge form with
potential for improved reliability.54 The fundamentals of

viscoelastic methods have been reviewed elsewhere55,56

and involve the analysis of clot formation and lysis by
physical measurement of blood viscosity and clot strength.
In practice, the common platforms rotational thromboelas-
tometry (ROTEM) and TEG provide an array of parameters
from multiple variations of clotting tests and there is no
agreed way of implementing results from these tests, al-
though attempts are being made to develop optimized
algorithms.57,58 While the speed of testing is attractive,
sensitivity and specificity may be an issue. A study by Raza
and colleagues tested samples from trauma patients and
found high P-AP complexes and D-dimer in samples where
ROTEM did not detect ongoing fibrinolysis.49 It has been
proposed that occult (local) fibrinolysis or the earlier pro-
duction of long-lived D-dimer or P-AP complexes could be
responsible for this discrepancy between fibrinolysis bio-
markers and viscoelastic methods.44

An interesting and controversial aspect of these discus-
sions is how to use antifibrinolytic therapies, particularly
TXA to reducebleeding in surgery59 or trauma. Several large-
scale clinical trials have demonstrated that TXAgiven early in
trauma is safe and effective60 and pre-hospital treatment is
recommended in Europe. In some quarters there are con-
cerns that adding antifibrinolytics to a situation where there
may be fibrinolysis resistance is potentially dangerous and
could lead to thrombotic complications, including wide-
spread vascular microthrombosis, organ failure and death.
Thus, it is proposed that rapid testing, by viscoelastic meth-
ods, particularly rapid TEG, should be used to target only
those patients who would benefit from antifibrinolytic
treatment. However, several large clinical trials of TXA in
trauma,61 postpartum hemorrhage62 and traumatic brain
injury63 observed no increases in thromboembolic compli-
cations,60 and there is a lack of evidence of disperse micro-
vascular thrombi.64,65 On the other hand, the HALT-IT trial,
which failed to show benefit of TXA in the treatment of
gastrointestinal bleeding, did observe an increased risk of
venous thromboembolic events (deep vein thrombosis plus
pulmonary embolism) in the TXA treatment group.66 The
authors speculated that the increased risk may be due to
disturbed hemostasis in the liver cirrhosis and variceal
bleeding patients that made up half the subjects in the study,
and/or the high dose of TXA used (4 g over 24hours), which
may also explain an observed increase in seizures. The
conclusions from many studies and systematic reviews
seem to be that more research is needed before there is
sufficient confidence in viscoelastic methods for routine
diagnostic testing, although there are promising signals of
benefit in situations to reduce blood component use.67–69

Hard evidence from randomized controlled trials to support
the application of viscoelastic methods in targeting antifi-
brinolytic therapy is lacking.50,70 It is argued that without
this evidence the established risks of TXA treatment delay
should outweigh theoretical but unproven risks of non-
targeted treatment.

As TXA treatment is delayed, it becomes progressively less
effective and after 3 hours benefit is lost60 and the dangers
appear to be excess bleeding, not thrombosis. There are few
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studies of uPA in pathological fibrinolysis, but Hijazi and
colleagues71 have identified the slow development of a peak
of uPA after several hours in a mouse model of brain injury,
following the earlier rise and decay of tPA. We have shown in
vitro that TXA plus urokinase stimulates plasmin generation
to aggravate consumption of α2-antiplasmin, which is often
reduced in trauma patients, to allow the fibrinolytic system
to go unchecked. The consequences are destruction of fibrin-
ogen and clotting factors, which could contribute to a
bleeding pathology.72 There are little data available on
changes in uPA or uPA–PAI complexes in trauma patients
and currently tests for these analytes are poorly standardized
so that estimates of gravimetric or molar concentrations in
patient plasma are unreliable.

Covid-19

Coagulopathy was soon observed to be a life-threatening
complication of infection with SARS-CoV-2 in hospitalized
patients.73,74 Venous thromboembolic events are noted in
many patients in intensive care and a high proportion of
patients are diagnosed with pulmonary embolism.75,76 Post-
mortem investigations have identified widely distributed
microvascular thrombi in the lungs, heart, kidney, liver, skin
and fat.77 Biomarkers in severely ill patients include raised
fibrinogen andD-dimer, which can reach very high levels,77,78

often >2 µg/mL, many times over the routine cut-off used to
exclude a diagnosis of thrombosis (0.5 µg/mL). D-dimer has
been investigated as amarker topredictmortality andmanage
patient care and direct anticoagulant treatment.74,79 Report-
ing results and standardization of D-dimer testing protocols is
an area of concern in Covid-19 patients and is particularly
important if it is to be linked to patient care.80 Given the
prevalence of thrombotic complications in Covid-19 patients
in intensive care, it is not surprising that thrombolytic therapy
with tPA is being considered for seriously ill patients via the
intravenous route81 or in nebulizer form.82 Other factors that
may influence coagulation and fibrinolysis in Covid-19
patients may include neutrophil extracellular trap (NET) for-
mation, which stimulates coagulation and retards fibrinoly-
sis83,84 and NETs have been observed in some early studies
with samples from Covid-19 patients.77,85,86 There is interest
in changes in PAI-1 levels during Covid-19 infection, and there
are early reports of fibrinolysis resistance assessed by antigen
studies and viscoelastic methods.85,87

Conclusions

There is a long history of fibrinolysis research and assay
method development, but no simple direct methods to
establish something like a fibrinolysis capacity or ameasure-
ment of fibrinolysis resistance on par with prothrombin time
or activated partial thromboplastin time, for example. Many
problems associated with poor standardization and assay
variability remain unresolved. Rapid universal methods
would be useful in situations such as trauma, DIC and
surgery, but there is a need for large-scale randomized trials
to establish safety and efficacy. A better understanding is

needed of changes in fibrinolysis following infection with
agents causing hemorrhagic diseases, and the emergence of
SARS-CoV-2 coagulopathy highlights the need for ongoing
research to improve the measurement of fibrinolysis.
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