Synlett 2021; 32(15): 1519-1524
DOI: 10.1055/a-1320-6946
cluster
Modern Nickel-Catalyzed Reactions

Borates as a Traceless Activation Group for Intermolecular Alkylarylation of Ethylene through Photoredox/Nickel Dual Catalysis

Xiaoliang Feng
,
Lei Guo
,
Shengqing Zhu
,
Lingling Chu
We thank the National Natural Science Foundation of China (Grant Numbers 21971036 and 21901036), the Shanghai Rising-Star Program (Grant Number 20QA1400200), and the Fundamental Research Funds for the Central Universities for financial support.


Abstract

A formal ethylene alkylarylation reaction with aryl halides and alkyl oxalates enabled by synergistic photoredox/nickel catalysis is reported. This protocol takes advantage of borates as a traceless activation group, achieving the formal ethylene difunctionalized products via a catalytic three-component 1,2-alkylarylation of vinyl borate followed by a base-assisted deborylation process. The mild conditions allow for excellent functional groups compatibility and broad substrate scope.

Supporting Information



Publication History

Received: 29 October 2020

Accepted after revision: 23 November 2020

Accepted Manuscript online:
23 November 2020

Article published online:
16 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
    • 1b McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 1c Zhang J.-S, Liu L, Chen T, Han L.-B. Chem. Asian J. 2018; 13: 2277
    • 1d Giri R, Kc S. J. Org. Chem. 2018; 83: 3013
    • 1e Derosa J, Tran VT, van der Puyl VA, Engle KM. Aldrichimica Acta 2018; 51: 21
    • 1f Dhungana RK, Kc S, Basnet P, Giri R. Chem. Rec. 2018; 18: 1314
    • 1g Wu X, Gong L.-Z. Synthesis 2019; 51: 122
    • 1h Derosa J, Apolinar O, Kang T, Tran VT, Engle KM. Chem. Sci. 2020; 11: 4287
    • 3a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 3b Ananikov VP. ACS Catal. 2015; 5: 1964
    • 3c Fu GC. ACS Cent. Sci. 2017; 3: 692
    • 4a Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
    • 4b Gu J.-W, Min Q.-Q, Yu L.-C, Zhang X. Angew. Chem. Int. Ed. 2016; 55: 12270
    • 4c Kc S, Dhungana RK, Shrestha B, Thapa S, Khanal N, Basnet P, Lebrun RW, Giri R. J. Am. Chem. Soc. 2018; 140: 9801
    • 4d Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
    • 4e García-Domínguez A, Mondal R, Nevado C. Angew. Chem. Int. Ed. 2019; 58: 12286
    • 4f Xu C, Yang Z.-F, An L, Zhang X. ACS Catal. 2019; 9: 8224
    • 4g Campbell MW, Compton JS, Kelly CB, Molander GA. J. Am. Chem. Soc. 2019; 141: 20069
    • 4h Chierchia M, Xu P, Lovinger GJ, Morken JP. Angew. Chem. Int. Ed. 2019; 58: 14245
    • 4i Sun S.-Z, Duan Y, Mega RS, Somerville RJ, Martin R. Angew. Chem. Int. Ed. 2020; 59: 4370
    • 4j Mega RS, Duong VK, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2020; 59: 4375
    • 4k Wang X.-X, Lu X, He S.-J, Fu Y. Chem. Sci. 2020; 11: 7950
    • 4l Huang L, Zhu C, Yi L, Yue H, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 457
    • 4m KC S, Dhungana RK, Khanal N, Giri R. Angew. Chem. Int. Ed. 2020; 59: 8047
    • 4n Xu C, Cheng R, Luo Y.-C, Wang M.-K, Zhang X. Angew. Chem. Int. Ed. 2020; 59: 18741
    • 4o Yang Z.-F, Xu C, Zheng X, Zhang X. Chem. Commun. 2020; 56: 2642
    • 4p Guo L, Yuan M, Zhang Y, Wang F, Zhu S, Gutierrez O, Chu L. J. Am. Chem. Soc. 2020; 142: 20390
    • 5a Derosa J, Tran VT, Boulous MN, Chen JS, Engle KM. J. Am. Chem. Soc. 2017; 139: 10657
    • 5b García-Domínguez A, Li Z, Nevado C. J. Am. Chem. Soc. 2017; 139: 6835
    • 5c Basnet P, Kc S, Dhungana RK, Shrestha B, Boyle TJ, Giri R. J. Am. Chem. Soc. 2018; 140: 15586
    • 5d Li W, Boon JK, Zhao Y. Chem. Sci. 2018; 9: 600
    • 5e Zhao X, Tu H.-Y, Guo L, Zhu S, Qing F.-L, Chu L. Nat. Commun. 2018; 9: 3488
    • 5f Basnet P, Dhungana RK, Thapa S, Shrestha B, Kc S, Sears JM, Giri R. J. Am. Chem. Soc. 2018; 140: 7782
    • 5g Basnet P, Kc S, Dhungana RK, Shrestha B, Boyle TJ, Giri R. J. Am. Chem. Soc. 2018; 140: 15586
    • 5h Derosa J, Kleinmans R, Tran VT, Karunananda MK, Wisniewski SR, Eastgate MD, Engle KM. J. Am. Chem. Soc. 2018; 140: 17878
    • 5i Derosa J, van der Puyl VA, Tran VT, Liu M, Engle Keary M. Chem. Sci. 2018; 9: 5278
    • 5j Thapa S, Dhungana RK, Magar RT, Shrestha B, Kc S, Giri R. Chem. Sci. 2018; 9: 904
    • 5k Shu W, García-Domínguez A, Quirós MT, Mondal R, Cárdenas DJ, Nevado C. J. Am. Chem. Soc. 2019; 141: 13812
    • 5l Zhang Y, Chen G, Zhao D. Chem. Sci. 2019; 10: 7952
    • 5m Guo L, Tu H.-Y, Zhu S, Chu L. Org. Lett. 2019; 21: 4771
    • 5n Li Y, Wei H, Wu D, Li Z, Wang W, Yin G. ACS Catal. 2020; 10: 4888
    • 5o Tu H.-Y, Wang F, Huo L, Li Y, Zhu S, Zhao X, Li H, Qing F.-L, Chu L. J. Am. Chem. Soc. 2020; 142: 9604
    • 6a Saini V, Sigman MS. J. Am. Chem. Soc. 2012; 134: 11372
    • 6b Saini V, Stokes BJ, Sigman MS. Angew. Chem. Int. Ed. 2013; 52: 11206
    • 6c Harper MJ, Emmett EJ, Bower JF, Russell CA. J. Am. Chem. Soc. 2017; 139: 12386
    • 6d Li J, Luo Y, Cheo HW, Lan Y, Wu J. Chem 2019; 5: 192
    • 7a Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
    • 7b Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
    • 7c Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
    • 7d Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 1
    • 7e Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 7f Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
    • 8a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 8b Cain DL, McLaughlin C, Molloy JJ, Carpenter-Warren C, Anderson NA, Watson AJ. B. Synlett 2019; 30: 787
    • 8c Yang J, Li H, Qin J, Song F, Zhang J, Qing F.-L, Chu L. Sci. Bull. 2018; 63: 1479
  • 9 Kischkewitz M, Okamoto K, Mück-Lichtenfeld C, Studer A. Science 2017; 355: 936
    • 10a Knapp DM, Gillis EP, Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
    • 10b Dick GR, Woerly EM, Burke MD. Angew. Chem. Int. Ed. 2012; 51: 2667
  • 11 In a typical procedure, to a flame-dried 8 mL reaction vial was charged with NiCl2·DME (0.02 mmol, 20 mol%), dtbbpy (0.02 mmol, 20 mol%), Ir[dF(CF3)ppy]2(dtbbpy)PF6 (0.003 mmol, 3 mol%), 4-bromopyridine (2a, 0.1 mmol, 1.0 equiv.), and cesium salt 3a (0.15 mmol, 1.5 equiv.), and the vial was capped. After evacuated and backfilled nitrogen three times, DMSO [0.05 M] and 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (1, 0.12 mmol, 1.2 equiv.) were added via syringe. The reaction mixture was then irradiated with a 90 W blue LED lamp (at approximately 3 cm away from the light source) with cooling from a fan for 24 h. The reaction was quenched with H2O, extracted with ethyl acetate. The combined organic layers were dried with Mg2SO4, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography (hexane/ethyl acetate = 10:1) to afford the product 4a as a pale yellow oil in 84% yield. 1H NMR (400 MHz, CDCl3): δ = 8.48 (d, J = 6.0 Hz, 2 H), 7.13 (d, J = 6.0 Hz, 2 H), 2.57–2.50 (m, 2 H), 1.53–1.48 (m, 2 H), 1.48–1.42 (m, 5 H), 1.34–1.27 (m, 5 H), 0.94 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 153.33, 149.37, 124.07, 43.17, 37.71, 32.87, 29.55, 26.45, 24.86, 22.03. HRMS (ESI+): m/z calcd for C14H22N+ [M + H]: 204.1747; found: 204.1741.