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ABSTRACT

Background The accurate differentiation between T1a and

T1b Barrett’s-related cancer has both therapeutic and prog-

nostic implications but is challenging even for experienced

physicians. We trained an artificial intelligence (AI) system

on the basis of deep artificial neural networks (deep learn-

ing) to differentiate between T1a and T1b Barrett’s cancer

on white-light images.

Methods Endoscopic images from three tertiary care cen-

ters in Germany were collected retrospectively. A deep

learning system was trained and tested using the principles

of cross validation. A total of 230 white-light endoscopic

images (108 T1a and 122 T1b) were evaluated using the AI

system. For comparison, the images were also classified by

experts specialized in endoscopic diagnosis and treatment

of Barrett’s cancer.

Results The sensitivity, specificity, F1 score, and accuracy

of the AI system in the differentiation between T1a and

T1b cancer lesions was 0.77, 0.64, 0.74, and 0.71, respec-

tively. There was no statistically significant difference be-

tween the performance of the AI system and that of ex-

perts, who showed sensitivity, specificity, F1, and accuracy

of 0.63, 0.78, 0.67, and 0.70, respectively.

Conclusion This pilot study demonstrates the first multi-

center application of an AI-based system in the prediction

of submucosal invasion in endoscopic images of Barrett’s

cancer. AI scored equally to international experts in the

field, but more work is necessary to improve the system

and apply it to video sequences and real-life settings.

Nevertheless, the correct prediction of submucosal inva-

sion in Barrett’s cancer remains challenging for both ex-

perts and AI.

* These authors contributed equally to this work.
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Introduction
The incidence of Barrett’s esophagus and Barrett’s-related can-
cer in the West has risen significantly in the past decade [1, 2],
and as this trend is expected to continue, diagnosis of Barrett’s
esophagus and Barrett’s cancer during endoscopy must be-
come as accurate as possible. Early diagnosis of Barrett’s cancer
is necessary because of its prognostic consequences [3]; how-
ever, detection and characterization pose a challenge even for
experienced endoscopists with modern equipment.

In the past few years, the field of artificial intelligence (AI)
has shown promising results in the diagnosis of early Barrett’s
cancer, especially in the detection domain [4–6]. In two initial
studies, our group was able to differentiate between early Bar-
rett’s cancer/high-grade dysplasia and nondysplastic Barrett’s
esophagus lesions using a convolutional neural network
(CNN), initially on endoscopic still images and subsequently in
real time during endoscopic procedures [7, 8]. However, there
are no data on the application of AI in the prediction of submu-
cosal invasion in Barrett’s cancer.

The identification of submucosal invasion (T1b) in Barrett’s
cancer is important because it has implications for the choice
of treatment. Lesions with suspected submucosal invasion
should be treated with endoscopic submucosal dissection
(ESD) rather than cap-based endoscopic mucosal resection
[9, 10]. In such lesions, ESD may be a valid alternative to sur-
gery, especially if histopathological evaluation of the resected
specimen fulfills the necessary criteria including submucosal in-
vasion depth <500µm, well or moderate differentiation, and no
lymphatic or blood vessel invasion [9, 10].

In this pilot study using endoscopic still images, we aimed to
demonstrate the AI-assisted prediction of submucosal invasion
in Barrett’s cancer. To the best of our knowledge, this is the first
report to show CNN-based differentiation between mucosal
(T1a) and submucosal (T1b) invasive Barrett’s cancer.

Methods
This was a retrospective, multicenter study in which endoscopic
image evaluation was correlated with the results of histopathol-
ogy. The primary objective of the study was to determine the
diagnostic performance (sensitivity, specificity, and accuracy)
of an AI system in differentiating between mucosal (T1a) and
submucosal (T1b) Barrett’s cancer. The secondary objective of
the study was to compare the performance of the AI system
with that of highly experienced Barrett’s endoscopists.

Endoscopic, high-definition, white-light images of T1a and
T1b Barrett’s cancer were collected retrospectively in three ter-
tiary care centers in Germany. The study was approved by the
Institutional Review Board of the University Hospital Augsburg.

Images

For AI training and testing, a total of 230 white-light images
(Olympus GIF-HQ190; Olympus Medical Systems, Tokyo, Japan)
from 116 patients were included. For most of the patients, only
one image was available; however, some patients contributed
several images, with a maximum of 14 images from one pa-

tient. Overall, 108 images showed mucosal (T1a) and 122 ima-
ges showed submucosal (T1b) invasive cancers. The images
from the three centers varied in terms of resolution, ranging
from 656×536 to 1350×1080 pixels. For our experiments, all
images were downscaled to the lowest resolution.

AI system
Training and testing

The network architecture used was a 101-layer residual CNN
[11]. The convolutional model, pretrained on the nonmedical
ImageNet dataset [12], was mainly used as a feature extractor.
Only the fully connected classifier at the end of the network
was optimized with the Adam optimizer [13], a learning rate of
1e-4 with a polynomial learning policy [14], and a weight decay
of 1e-4.

The network was trained for 1000 epochs and with a batch
size of 32. These hyperparameters were optimized using a 5-
fold cross validation approach, where the patient data were
separated into disjoint sets, such that their union again resul-
ted in the complete original dataset. Images from the same pa-
tient were not divided into different folds. For each validation
fold, a separate CNN model was trained omitting the data of
the validation fold. The distribution of patients to the individual
validation sets was controlled by a random seed.

As the resolution of the data was nonuniform, all training
images were resized such that the smaller axis had 512 pixels.
Then, quadradic patches with a resolution of 512×512 pixels
were extracted randomly along the larger axis and randomly ro-
tated and flipped for augmentation.

Validation

For validation, which was as independent from the training as
possible, again a 5-fold cross validation was performed, but
with different folds from those in the training phase. However,
as the dataset was of limited size, the composition of the cross
validation folds set may have influenced the final result. It is
possible that some subsets of images used to validate the mod-
el may have closely mirrored or completely differed from the
visual properties of most of the data used for training for this
fold. Additionally, the dataset also contained easy as well as dif-
ficult samples. A validation set consisting of mainly easy or
mainly difficult samples would result in over- or underestima-
tion of the model performance, respectively. To reduce these
effects, multiple cross validation runs were performed using
different random seeds, which were all different from the seed
used for parameter optimization. To achieve the most repre-
sentative result, the 5-fold cross validation scheme was run 10
times with different validation set compositions, and the indi-
vidual evaluation metrics were averaged over all runs.

Histopathology

Histopathology served as the reference standard for the char-
acterization of images. Based on the results of histopathology,
endoscopic images were divided into two categories:
1. images with cancer infiltration limited to the mucosa (pT1a)
2. images with cancer infiltration into the submucosa (pT1b).
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Images of lesions with infiltration deeper than the submucosa
(> T1b) were excluded from the study. The depth of mucosal
(m1, m2, m3, m4) or submucosal (sm1, sm2, sm3) invasion
was not further evaluated. Histopathology was based on speci-
mens resected with the ESD technique. Histopathology was
confirmed by a second reference pathologist.

Image evaluation by endoscopists

The image dataset was characterized by five international ex-
pert endoscopists (A.T., T.O., P.H.D., S.S., P.S.) who were blind-
ed to the true diagnosis of the images.

Outcome measures

The primary outcome was the sensitivity and specificity of the
AI system in the prediction of T1b cancer. F1 and classification
accuracy were also calculated, as follows:

with TP, TN, FP, FN beeing the number of true positive, true
negative, false positive and false negative images, respectively

To ensure bias-free results in cross validation evaluation,
these measures were calculated after totaling the confusion
matrices for all folds [15].

Interobserver variation between the five experts for the dif-
ferentiation between T1a and T1b cancer was calculated using
Fleiss’ kappa (κ) statistics for multiple raters (Microsoft Excel
Version 16.0). Interpretation of kappa values was as follows: κ
>0.8, almost perfect agreement; 0.8–0.61, substantial agree-
ment; 0.6–0.41, moderate agreement; 0.4–0.21, fair agree-
ment; < 0.2, slight agreement; 0, agreement equal to chance;
and<0 suggested disagreement [16].

Results
Performance of AI system

The sensitivity and specificity of the AI network in the differ-
entiation between mucosal and submucosal cancer averaged
over 10 runs was 0.77 (95% confidence interval [CI] 0.75–
0.78) and 0.64 (95%CI 0.62–0.66), respectively, whereas ac-
curacy and F1 scores showed values of 0. 71 (95%CI 0.70–
0.72) and 0. 74 (95%CI 0.72–0.74), respectively (▶Table 1).

Image evaluation and performance of expert
endoscopists

The average performance of five expert endoscopists was 0.63
(95%CI 0.53–0.77), 0.78 (95%CI 0.67–0.89), 0.70 (95%CI
0.67–0.73), and 0.67 (95%CI 0.63–0.74) for sensitivity, speci-
ficity, accuracy, and F1, respectively (▶Table1). Interobserver
agreement (Fleiss’ kappa) was 0.49 between the five expert
endoscopists.

The average performance of the AI system was similar to
that of the experts who participated in the image analysis.
However, there seemed to be a wider range of performance re-
sults for the expert endoscopists (▶Fig. 1).

A statistical evaluation on the basis of a multivariate exten-
sion of the McNemar test revealed no statistically significant
difference between the accuracy of the AI system and the
mean of the expert endoscopists.

Discussion
In this pilot study using white-light images, we showed that a
trained AI algorithm was able to predict submucosal invasion
of Barrett’s-related cancer and differentiate between T1a and
T1b carcinoma with a sensitivity of 77%, specificity of 64%,
average F1 score of 74%, and an overall accuracy of 71% (▶Ta-
ble1). These scores were comparable to the performance of
five international Barrett’s expert endoscopists who evaluated
the same set of images with an interobserver variation of κ=
0.49.

In Barrett’s cancer, preoperative differentiation between T1a
and T1b cancers has relevant therapeutic and prognostic im-
plications. Esophageal surgery for Barrett’s cancer has a 30-
day mortality rate of up to 30% and a morbidity rate as high as

▶ Table 1 Performance scores of expert endoscopists and the artificial intelligence (AI) system. The mean of the AI system is related to 10 different
runs, whereas the mean of the endoscopists is related to five international expert endoscopists (interobserver agreement between 5 endoscopists, κ=
0.49).

Endoscopists (n=5) AI-based results

Mean (95%CI) SD Mean (95%CI) SD

F1 0.67 (0.63–0.74) 0.06 0.74 (0.72–0.74) 0.02

Accuracy 0.70 (0.67–0.73) 0.03 0.71 (0.70–0.72) 0.02

Sensitivity 0.63 (0.53–0.78) 0.15 0.77 (0.75–0.78) 0.03

Specificity 0.78 (0.67–0.89) 0.11 0.64 (0.62–0.66) 0.03

AI, artificial intelligence; CI, confidence interval; SD, standard deviation.
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50% [17]. Endoscopic resection is the method of choice for
treatment of T1a lesions [17]. For lesions with suspected sub-
mucosal invasion, ESD may be a valid alternative to surgery
[9, 10]. However, pretherapeutic staging to differentiate be-
tween T1a and T1b lesions is challenging, even with additional
endoscopic ultrasound, which itself requires a high level of ex-
pertise for accuracy and could be associated with over- or un-
der-staging of lesions [17, 18].

AI technology has been used to predict the invasion depth of
cancers in the gastrointestinal tract [19, 20]. Horie et al. [21]
demonstrated the differentiation between early (T1) and ad-
vanced (T2–T4) cancers in the esophagus using a deep neural
network, with a diagnostic accuracy of 98%, although both
squamous cell carcinomas and adenocarcinomas were includ-
ed. However, the classification task of differentiating between
mucosal (T1a) and submucosal (T1b) Barrett’s cancer, which
was done in our study, is more challenging.

In the stomach, Zhu et al. used a CNN to predict the invasion
depth of gastric cancer, with an accuracy of 89.2%, which was
significantly better than the performance of experienced
endoscopists who scored an average of 77.5% accuracy. In con-
trast to our study, however, Zhu et al. differentiated between
mucosal/shallow submucosal cancers and deeper invasive can-
cers [19]. In their study, almost a third of images in the test
group had invasion of the muscularis propria, subserosa or ser-
osa (T2, T3, and T4). The interpretation of these more advanced
images is less challenging than differentiating between T1a and
T1b lesions, as was done in our study. This can be seen when the

average performance of the endoscopists involved in both
studies is considered.

In a further study in the colon, Lui et al. used AI image classi-
fiers to differentiate between endoscopically curable and endo-
scopically incurable lesions, with an overall accuracy of 85.5%
and an accuracy of 94.3% for narrow-band imaging [20]. Again,
compared with the performance results in our study, these
scores are clearly better. However, in the study by Lui et al., 80
% of endoscopically curable lesions were benign adenomas
while 20% were cancer lesions with submucosal invasion
depths > 1000µm. The differentiation between adenomas and
deep submucosal invasive cancers is without doubt less chal-
lenging than differentiating between T1a and T1b lesions, as
was done in our study. Again, when the performance of an ex-
perienced endoscopist in the study by Lui et al. is considered
(accuracy of 86.4%), then the difficulty of the images in our
study can be better understood. Therefore, the performance
scores of these two AI studies are not comparable to the results
of our study.

We rated the performance of the AI system by comparing it
with that of expert endoscopists from Japan, Europe, and the
USA. The endoscopists were internationally recognized experts
in the endoscopic diagnosis and treatment of early carcinomas
with a focus on Barrett’s esophagus. As the results of interob-
server variation show, the dataset was challenging for the ex-
perts, with a Fleiss’ kappa coefficient of 0.49, reflecting only
moderate agreement between the experts but also the poten-
tial for using AI in predicting submucosal invasion. However,
the evaluation of still images does not reflect the ideal situation
in real life, where expert endoscopists will judge a lesion dyna-
mically using features such as the movement of the esophageal
wall, the softness or rigidity of the tissue around the lesion, and
the behavior of the region of interest during insufflation and
deflation of air. Furthermore, an expert will likely combine
modalities such as white-light and virtual chromoendoscopy,
as well as clean the lesion completely of all mucus before mak-
ing a diagnosis.

These points also address the major limitations of our study,
which include the number and quality of endoscopic images in-
cluded. Data were collected retrospectively from three differ-
ent centers. Some images were mere overviews of the lesion,
whereas magnified endoscopic images with better details of
the surface and vascular patterns made up only 12% of the da-
taset (▶Fig. 2). However, the fact that the results were
achieved using white-light and (almost entirely) nonmagnified
endoscopic images, demonstrates the high potential of the AI
system. In addition, the idea of including a diverse set of images
in the training of an AI system may lead to greater specificity of
the network. Furthermore, a greater proportion of magnified
high-quality images, as well as video sequences, may have im-
proved the diagnostic performance of the experts and possibly
also the outcome of the AI network.

The inclusion of several images from a single patient intro-
duced statistical dependencies into the study. However, we
strictly avoided splitting the images from a single patient into
training and testing to ensure independent validation results.
Another effect might be the over- or underestimation of per-
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▶ Fig. 1 Receiver operating characteristic curve comparing the
performance of the artificial intelligence (AI) network with expert
endoscopists. The AI network showed little dispersion between
most measurements of different runs, whereas the experts’ per-
formance varied widely.
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formance assuming that all images from one patient are classi-
fied the same, either correct or false. A closer look at the results
revealed that no such effect occurred. This also holds true for
the expert evaluations.

The validation method provided results that were not com-
pletely independent. However, using 5-fold cross validation
with one seed for hyperparameter optimization and 10 differ-
ent seeds for validation ensured as much independence as pos-
sible for a small dataset. The alternative of splitting the data
once into training, testing, and validation is highly dependent
on the distribution of the sets with a high risk of a bias due to
this split. In that sense we avoided the selection bias of so-
called “external validation” approaches, accepting a weak de-
pendence of the validation data.

Endoscopic still images do not sufficiently depict the chal-
lenges the system would face in reality, which means that video
recordings for validation of the network or a real-life setting
would have been preferable. Finally, we did not differentiate
between the depths of mucosal (m1–m4) or submucosal
(sm1– sm3) invasion; this, however, may have been desirable
as it may be almost impossible to differentiate sufficiently be-
tween a deeply mucosal (m3 /m4) invasive cancer and a shallow
submucosal (sm1) invasive lesion.

Our future work will focus on improving the diagnostic abil-
ity of the system and implementing it in a real-life endoscopy
setting. However, the current study may be an initial step to-
ward developing an AI system to aid in the prediction of submu-
cosal invasion of Barrett’s cancer.

Conclusion

In this preliminary “proof of concept” study, performance
scores of an AI system in the prediction of submucosal invasion
in Barrett’s cancer were comparable to those of expert endos-
copists. The data showed that the prediction of submucosal in-
vasion is a challenge even for Barrett’s experts. However, with
more training data, the diagnostic ability of the AI system can
be improved considerably and then transferred to video images
and to a real-life setting. Considering the difficulty this task po-
ses to endoscopists, as well as the prognostic and therapeutic
implications involved, we believe that AI has the potential to
support the characterization of early Barrett’s cancer in future
endoscopy practice, especially for non-Barrett’s experts.
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