Klin Monbl Augenheilkd 2021; 238(02): 128-131
DOI: 10.1055/a-1306-1033
Übersicht

Endocrine Dysfunction in Open Angle Glaucoma

Article in several languages: English | deutsch
Christian van Oterendorp
Klinik für Augenheilkunde, Universitätsklinikum Göttingen, Deutschland
› Author Affiliations

Abstract

The eye, like all organs, is exposed to the effects of the bodyʼs endocrine system. In addition, however, local branches of the endocrine system control important organ-specific functions, such as the production and drainage of aqueous humour. Similarly, the eye as a sensory organ acts back on endocrine controlled functions of the body, for example the day-night rhythm. This article aims to illustrate the physiological and pathological interactions of the eye and the endocrine functions of the body in the context of glaucoma. 1. The renin-angiotensin-aldosterone system, which as a local system is involved in the control of aqueous humour production and outflow. 2. The hormone endothelin, which as a strong vasoconstrictor plays a role in the dysregulated perfusion of the optic nerve and retina, and 3. the disruption of the day-night rhythm in advanced glaucoma, which is thought to be caused by damage to light-sensitive ganglion cells.



Publication History

Received: 09 September 2020

Accepted: 22 October 2020

Article published online:
12 January 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References/Literatur

  • 1 Holappa M, Vapaatalo H, Vaajanen A. Many Faces of Renin-angiotensin System – Focus on Eye. Open Ophthalmol J 2017; 11: 122-142
  • 2 Leung PS. Local RAS. Adv Exp Med Biol 2010; 690: 69-87
  • 3 Aleksiejczuk M, Gromotowicz-Poplawska A, Marcinczyk N. et al. The expression of the renin-angiotensin-aldosterone system in the skin and its effects on skin physiology and pathophysiology. J Physiol Pharmacol 2019; DOI: 10.26402/jpp.2019.3.01.
  • 4 Igić R. Four decades of ocular renin-angiotensin and kallikrein-kinin systems (1977–2017). Exp Eye Res 2018; 166: 74-83
  • 5 Wagner J, Jan Danser AH, Derkx FH. et al. Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system. Br J Ophthalmol 1996; 80: 159-163
  • 6 Holappa M, Vapaatalo H, Vaajanen A. Local ocular renin-angiotensin-aldosterone system: any connection with intraocular pressure? A comprehensive review. Ann Med 2020; 52: 191-206
  • 7 Constad WH, Fiore P, Samson C. et al. Use of an angiotensin converting enzyme inhibitor in ocular hypertension and primary open-angle glaucoma. Am J Ophthalmol 1988; 105: 674-677
  • 8 Costagliola C, Di Benedetto R, De Caprio L. et al. Effect of oral captopril (SQ 14225) on intraocular pressure in man. Eur J Ophthalmol 1995; 5: 19-25
  • 9 Costagliola C, Verolino M, De Rosa ML. et al. Effect of oral losartan potassium administration on intraocular pressure in normotensive and glaucomatous human subjects. Exp Eye Res 2000; 71: 167-171
  • 10 Agarwal P, Agarwal R. Trabecular meshwork ECM remodeling in glaucoma: could RAS be a target?. Expert Opin Ther Targets 2018; 22: 629-638
  • 11 Ayaki M, Shiba D, Negishi K. et al. Depressed visual field and mood are associated with sleep disorder in glaucoma patients. Sci Rep 2016; 6: 25699
  • 12 Wang H, Zhang Y, Ding J. et al. Changes in the circadian rhythm in patients with primary glaucoma. PLoS One 2013; 8: e62841
  • 13 Gracitelli CPB, Duque-Chica GL, Roizenblatt M. et al. Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma. Ophthalmology 2015; 122: 1139-1148
  • 14 Agorastos A, Skevas C, Matthaei M. et al. Depression, anxiety, and disturbed sleep in glaucoma. J Neuropsychiatry Clin Neurosci 2013; 25: 205-213
  • 15 Lanzani MF, de Zavalía N, Fontana H. et al. Alterations of locomotor activity rhythm and sleep parameters in patients with advanced glaucoma. Chronobiol Int 2012; 29: 911-919
  • 16 Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070-1073
  • 17 Hattar S, Liao HW, Takao M. et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 2002; 295: 1065-1070
  • 18 Ciulla L, Moorthy M, Mathew S. et al. Circadian Rhythm and Glaucoma: What do We Know?. J Glaucoma 2020; 29: 127-132
  • 19 Panda S, Provencio I, Tu DC. et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science 2003; 301: 525-527
  • 20 Hatori M, Le H, Vollmers C. et al. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One 2008; 3: e2451
  • 21 Lockley SW, Brainard GC, Czeisler CA. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 2003; 88: 4502-4505
  • 22 Cui Q, Ren C, Sollars PJ. et al. The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neuroscience 2015; 284: 845-853
  • 23 de Zavalía N, Plano SA, Fernandez DC. et al. Effect of experimental glaucoma on the non-image forming visual system. J Neurochem 2011; 117: 904-914
  • 24 Obara EA, Hannibal J, Heegaard S. et al. Loss of Melanopsin-Expressing Retinal Ganglion Cells in Severely Staged Glaucoma Patients. Invest Ophthalmol Vis Sci 2016; 57: 4661-4667
  • 25 Chang DS, Xu L, Boland MV. et al. Accuracy of pupil assessment for the detection of glaucoma: a systematic review and meta-analysis. Ophthalmology 2013; 120: 2217-2225
  • 26 Münch M, Léon L, Collomb S. et al. Comparison of acute non-visual bright light responses in patients with optic nerve disease, glaucoma and healthy controls. Sci Rep 2015; 5: 15185
  • 27 Ahmadi H, Lund-Andersen H, Kolko M. et al. Melanopsin-mediated pupillary light reflex and sleep quality in patients with normal tension glaucoma. Acta Ophthalmol 2020; 98: 65-73
  • 28 Bierings RAJM, Gordijn MCM, Jansonius NM. Chronotyping glaucoma patients with the Munich ChronoType Questionnaire: A case-control study. PLoS One 2019; 14: e0214046
  • 29 Pasquale LR. Vascular and autonomic dysregulation in primary open-angle glaucoma. Curr Opin Ophthalmol 2016; 27: 94-101
  • 30 Mastropasqua R, Fasanella V, Agnifili L. et al. Advance in the pathogenesis and treatment of normal-tension glaucoma. Prog Brain Res 2015; 221: 213-232
  • 31 Choi J, Kook MS. Systemic and Ocular Hemodynamic Risk Factors in Glaucoma. Biomed Res Int 2015; 2015: 141905
  • 32 Tezel G, Kass MA, Kolker AE. et al. Plasma and aqueous humor endothelin levels in primary open-angle glaucoma. J Glaucoma 1997; 6: 83-89
  • 33 Holló G, Lakatos P, Farkas K. Cold pressor test and plasma endothelin-1 concentration in primary open-angle and capsular glaucoma. J Glaucoma 1998; 7: 105-110
  • 34 Henry E, Newby DE, Webb DJ. et al. Altered endothelin-1 vasoreactivity in patients with untreated normal-pressure glaucoma. Invest Ophthalmol Vis Sci 2006; 47: 2528-2532
  • 35 Kunimatsu S, Mayama C, Tomidokoro A. et al. Plasma endothelin-1 level in Japanese normal tension glaucoma patients. Curr Eye Res 2006; 31: 727-731
  • 36 Emre M, Orgül S, Haufschild T. et al. Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br J Ophthalmol 2005; 89: 60-63
  • 37 Chauhan BC, LeVatte TL, Jollimore CA. et al. Model of endothelin-1-induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci 2004; 45: 144-152
  • 38 Chaphalkar RM, Stankowska DL, He S. et al. Endothelin-1 Mediated Decrease in Mitochondrial Gene Expression and Bioenergetics Contribute to Neurodegeneration of Retinal Ganglion Cells. Sci Rep 2020; 10: 3571
  • 39 Rosenthal R, Fromm M. Endothelin antagonism as an active principle for glaucoma therapy. Br J Pharmacol 2011; 162: 806-816
  • 40 Thieme H, Schimmat C, Münzer G. et al. Endothelin antagonism: effects of FP receptor agonists prostaglandin F2alpha and fluprostenol on trabecular meshwork contractility. Invest Ophthalmol Vis Sci 2006; 47: 938-945
  • 41 Resch H, Karl K, Weigert G. et al. Effect of dual endothelin receptor blockade on ocular blood flow in patients with glaucoma and healthy subjects. Invest Ophthalmol Vis Sci 2009; 50: 358-363
  • 42 Benigni A, Perico N, Remuzzi G. The potential of endothelin antagonism as a therapeutic approach. Expert Opin Investig Drugs 2004; 13: 1419-1435