Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2021; 31(02): 80-89
DOI: 10.1055/a-1299-1598
Übersicht

Faszien als sensomotorisches Netzwerk und deren Beziehung zu chronischen Rückenschmerzen

Fasciae as a Sensorimotor Network and their Relationship to Chronic Back Pain
Kathrin Bitterlich
1   Division of Motor Research, Pathophysiology and Biomechanics, Clinic for Trauma, Hand and Reconstructive Surgery, Jena
,
Christoph Anders
1   Division of Motor Research, Pathophysiology and Biomechanics, Clinic for Trauma, Hand and Reconstructive Surgery, Jena
› Author Affiliations

Zusammenfassung

Ziel Ziel dieser Literaturübersicht ist es das fasziale Netzwerk im Zusammenhang mit der Entstehung von Rückenschmerzen zu betrachten, mögliche Einflussfaktoren zu analysieren und diagnostische Möglichkeiten aufzuzeigen, mit denen Veränderungen in faszialen Strukturen bei Rückenschmerzpatienten verdeutlicht werden können.

Methode Es wurde eine Literaturrecherche mit den Schlagworten Faszien, Sensomotorik, unspezifischer Rückenschmerz, creep, Schmerz und Diagnostik durchgeführt. Von etwa 400 Artikeln wurden die Abstracts gesichtet, etwa 150 wurden gelesen und ausgewertet. Am Ende flossen 86 Artikel in die Erstellung dieses narrativen Reviews ein.

Ergebnis Faszien können sich aufgrund der enthaltenen Fasern gut an eine Zugbelastung anpassen. Ab einer Dehnung der Fasern zwischen 3–8% kommt es zu ersten irreversiblen Gewebeveränderungen, die einen Beitrag zu unspezifischen Rückenschmerzen leisten können (creep-Effekt). Durch Mikroverletzungen können die in den Faszien enthaltenen Fibroblasten aktiviert werden und die Steifigkeit der Faszien erhöhen, was den möglichen Bewegungsradius einschränken kann und die Faszienvorspannung erhöht. Somit sinkt die Toleranz auf eine angelegte Zugspannung. Durch die Ultraschallelastografie ist die reduzierte Beweglichkeit in den Faserschichten der Faszien zu erkennen. Außerdem spielen Faszien durch ihre starke Innervation bei der Propriozeption, Exterozeption, Interozeption und Nozizeption eine maßgebliche Rolle.

Schlussfolgerung Ob das fasziale Netzwerk mit der Entstehung von unspezifischen Rückenschmerzen in Verbindung steht, kann aufgrund der derzeit immer noch lückenhaften Erkenntnisse über die funktionellen Zusammenhänge noch nicht geklärt werden. Außerdem stehen noch keine diagnostischen Mittel zur Verfügung, die die Funktionalität der Faszien sicher bewerten können. Dennoch sollten die Faszien als sensomotorisches Netzwerk verstanden werden, das in seiner Komplexität mit allen Strukturen des menschlichen Körpers wechselwirkt und somit einen Einfluss auf Rückenschmerzen haben kann.

Abstract

Aim The aim of this literature review was to examine the fascial network in connection with the development of back pain, to analyse possible influencing factors and to show diagnostic possibilities.

Method A literature review was conducted using the keywords fascia, sensorimotor function, non-specific back pain, creep, pain and diagnostics. Abstracts of about 400 articles were reviewed, about 150 were read and evaluated. Finally, 86 articles were included for this narrative review.

Result Fasciae can adapt well to tensile stress due to the fibres contained, but irreversible tissue changes begin to occur if the fibres are stretched about 3–8%, which can contribute to unspecific back pain (creep effect). Micro-injuries can activate the fibroblasts of the fascia and increase its stiffness, limiting the possible range of movement and increase the fascial pre-tension. This reduces the tolerance to an applied tensile stress. The reduced mobility in the fibrous layers of the fasciae can be detected by ultrasonic elastography. In addition, fasciae play a decisive role in proprioception, exteroception, interoception and nociception due to their dense innervation.

Conclusion Whether the fascial network interrelates with the development of unspecific back pain cannot yet be clarified due to the currently still incomplete knowledge about the functional connections. In addition, no diagnostic tools are yet available that can reliably evaluate the functionality of the fascia. Nevertheless, fascia should be understood as a sensorimotor network which, in its complexity, interacts with all structures of the human body and can therefore have an influence on back pain.



Publication History

Received: 11 June 2020

Accepted: 26 October 2020

Article published online:
12 November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Findley T, Chaudhry H, Dhar S. Transmission of muscle force to fascia during exercise. J Bodyw Mov Ther 2015; 19: 119-123
  • 2 Driscoll M. Fascia – The unsung hero of spine biomechanics. J Bodyw Mov Ther 2018; 22: 90-91
  • 3 Willard FH. et al. The thoracolumbar fascia: anatomy, function and clinical considerations. Journal of Anatomy 2012; 221: 507-536
  • 4 Panjabi MM. et al. On the understanding of clinical instability. Spine (Phila Pa 1976) 1994; 19: 2642-2650
  • 5 Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 1992; 5: 383-389
  • 6 Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 1992; 5: 390-396
  • 7 Panjabi MM. Consequences of a subfailure injury. A hypothesis of chronic spine pain. in IV World Congress of Biomechanics. Calgary: 2002
  • 8 Panjabi MM. A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction. Eur Spine J 2006; 15: 668-676
  • 9 Knutsson F. The instability associated with disk degeneration in the lumbar spine. Acta Radiologica 1944; 25: 593-609
  • 10 Panjabi MM. Clinical spinal instability and low back pain. J Electromyogr Kinesiol 2003; 13: 371-379
  • 11 Demoulin C. et al. Lumbar functional instability: a critical appraisal of the literature. Annales de Réadaptation et de Médecine Physique 2007; 50: 677-684
  • 12 Radebold A. et al. Impaired postural control of the lumbar spine is associated with delayed muscle response times in patients with chronic idiopathic low back pain. Spine 2001; 26: 724-730
  • 13 Byl NN, Sinnott PL. Variations in Balance and Body Sway in Middle-Aged Adults – Subjects with Healthy Backs Compared with Subjects with Low-Back Dysfunction. Spine 1991; 16: 325-330
  • 14 Magnusson ML. et al. European Spine Society – the AcroMed Prize for Spinal Research 1995. Unexpected load and asymmetric posture as etiologic factors in low back pain. Eur Spine J 1996; 5: 23-35
  • 15 Radebold A. et al. Muscle response pattern to sudden trunk loading in healthy individuals and in patients with chronic low back pain. Spine 2000; 25: 947-954
  • 16 Solomonow M. Ligaments: a source of work-related musculoskeletal disorders. J Electromyogr Kinesiol 2004; 14: 49-60
  • 17 Solomonow M. et al. The ligamento-muscular stabilizing system of the spine. Spine 1998; 23: 2552-2562.
  • 18 Ranger TA. et al. Shorter Lumbar Paraspinal Fascia Is Associated With High Intensity Low Back Pain and Disability. Spine 2016; 41: E489-E493
  • 19 Simons K. et al. Innervation of the Thoracolumbar Fascia and its Relationship to Lower Back Pain. The Spine Scholar 2018; 2: 3669
  • 20 Wilke HJ. et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999; 24: 755-762
  • 21 Nachemson A, Elfstrom G. Intravital dynamic pressure measurements in lumbar discs. A study of common movements, maneuvers and exercises. Scand J Rehabil Med Suppl 1970; 1: 1-40
  • 22 Hasenbring M, Hallner D, Klasen B. Psychologische Mechanismen in Prozess der Schmerzchronifizierung – Unter- oder uberbewertet?. Schmerz 2001; 15: 442-447
  • 23 Hasenbring M. et al. Risk-Factors of Chronicity in Lumbar Disc Patients – a Prospective Investigation of Biologic, Psychologic, and Social Predictors of Therapy Outcome. Spine 1994; 19: 2759-2765
  • 24 O'Sullivan P. Diagnosis and classification of chronic low back pain disorders: Maladaptive movement and motor control impairments as underlying mechanism. Manual Therapy 2005; 10: 242-255
  • 25 Pfingsten M. Angstvermeidungs-Überzeugungen bei Rückenschmerzen Gütekriterien und prognostische Relevanz des FABQ. Schmerz 2004; 18: 17-27
  • 26 Luoto S. et al. One-footed and externally disturbed two-footed postural control in patients with chronic low back pain and healthy control subjects. Spine 1998; 23: 2081-2090
  • 27 Nies N, Sinnott PL. Variations in balance and body sway in middle-aged adults. Subjects with healthy backs compared with subjects with low-back dysfunction. Spine 1991; 16: 325-330
  • 28 Malanga GA, Cruz Colon EJ. Myofascial Low Back Pain: A Review. Physical Medicine and Rehabilitation. Clinics 2010; 21: 711-724
  • 29 Schleip R. et al. Letter to the Editor concerning “A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction” (M. Panjabi). Eur Spine J 2007; 16: 1733-1735
  • 30 van der Wal J. The architecture of the connective tissue in the musculoskeletal system-an often overlooked functional parameter as to proprioception in the locomotor apparatus. Int J Ther Massage Bodywork 2009; 2: 9-23
  • 31 Schleip R. Faszien und nervensystem. Osteopathische Medizin 2003; 1: 20-30
  • 32 Schleip R. Fascial plasticity – a new neurobiological explanation Part 2. Journal of Bodywork and Movement Therapies 2003; 7: 104-116
  • 33 Threlkeld AJ. The effects of manual therapy on connective tissue. Physical therapy 1992; 72: 893-902
  • 34 Dölken M. Was muss ein Manualtherapeut über die Physiologie des Bindegewebes und die Entwicklung einer Bewegungseinschränkung wissen?. Manuelle Medizin 2002; 40: 169-176
  • 35 Currier DP, Nelson RM. Dynamics of human biologic tissues. Vol. 8. 1992. FA Davis Co;
  • 36 Solomonow M. et al. Muscular dysfunction elicited by creep of lumbar viscoelastic tissue. J Electromyogr Kinesiol 2003; 13: 381-396.
  • 37 Solomonow M. et al. Flexion-relaxation response to static lumbar flexion in males and females. Clin Biomech (Bristol, Avon) 2003; 18: 273-279
  • 38 Solomonow M. et al. Biomechanics of increased exposure to lumbar injury caused by cyclic loading: part 1. Loss of reflexive muscular stabilization. Spine 1999; 24: 2426-2434
  • 39 Gedalia U. et al. Biomechanics of increased exposure to lumbar injury caused by cyclic loading – Part 2. Recovery of reflexive muscular stability with rest. Spine 1999; 24: 2461-2467
  • 40 Schleip R, Zorn A, Klingler W. Biomechanical Properties of Fascial Tissues and Their Role as Pain Generators. Journal of Musculoskeletal Pain 2010; 18: 393-395
  • 41 Yahia LH, Pigeon P, DesRosiers EA. Viscoelastic properties of the human lumbodorsal fascia. Journal of Biomedical Engineering 1993; 15: 425-429
  • 42 Spector M. Musculoskeletal connective tissue cells with muscle: expression of muscle actin in and contraction of fibroblasts, chondrocytes, and osteoblasts. Wound Repair Regen 2001; 9: 11-18
  • 43 Schleip R. et al. Fascia Is Able to Actively Contract and May Thereby Influence Musculoskeletal. Dynamics: A Histochemical and Mechanographic Investigation. Frontiers in Physiology 2019; 10 just published online
  • 44 Hoppe K. et al. Contractile elements in muscular fascial tissue – implications for in-vitro contracture testing for malignant hyperthermia. Anaesthesia 2014; 69: 1002-1008
  • 45 Bordoni B, Zanier E. Understanding fibroblasts in order to comprehend the osteopathic treatment of the fascia. Evidence-Based Complementary and Alternative Medicine 2015; 2015: 860934
  • 46 Gabbiani G. Evolution and clinical implications of the myofibroblast concept. Cardiovascular research 1998; 38: 545-548
  • 47 Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005; 13: 7-12
  • 48 Benjamin M. The fascia of the limbs and back – a review. Journal of anatomy 2009; 214: 1-18
  • 49 Bochaton-Piallat ML, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Res 2016; 5
  • 50 Schleip R. Fascia as a sensory organ, in Fascia in the Osteopathic Field. 2017 Handspring Publishing Ltd. East Lothian:
  • 51 Stecco C. et al. Anatomy of the deep fascia of the upper limb. Second part: study of innervation. Morphologie 2007; 91: 38-43
  • 52 Lederman E. Fundamentals of manual therapy: physiology, neurology, and psychology. 1997. Churchill Livingstone;
  • 53 Schilder A. et al. Sensory findings after stimulation of the thoracolumbar fascia with hypertonic saline suggest its contribution to low back pain. Pain 2014; 155: 222-231
  • 54 Tesarz J. Die Fascia thoracolumbalis als potenzielle Ursache für Rückenschmerzen: anatomische Grundlagen und klinische Aspekte. Osteopathische Medizin 2010; 11: 28-34
  • 55 Johansson H, Sjolander P, Sojka P. Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Crit Rev Biomed Eng 1991; 18: 341-368
  • 56 Schleip R. Fascia as an organ of communication. Terra Rosa e-magazine 2013; 11 just published online
  • 57 van Dieen JH, Cholewicki J, Radebold A. Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine 2003; 28: 834-841
  • 58 Langevin HM, Sherman KJ. Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Medical Hypotheses 2007; 68: 74-80
  • 59 Schleip R. et al. Passive muscle stiffness may be influenced by active contractility of intramuscular connective tissue. Medical Hypotheses 2006; 66: 66-71
  • 60 Liptan GL. Fascia: A missing link in our understanding of the pathology of fibromyalgia. Journal of Bodywork and Movement Therapies 2010; 14: 3-12
  • 61 Stecco C. et al. Hyaluronan within fascia in the etiology of myofascial pain. Surgical and Radiologic Anatomy 2011; 33: 891-896
  • 62 Roldan CJ, Hu N. Myofascial Pain Syndromes in the Emergency Department: What Are We Missing?. Journal of Emergency Medicine 2015; 49: 1004-1010
  • 63 van Dieën JH, Flor H, Hodges PW. Low-back pain patients learn to adapt motor behavior with adverse secondary consequences. Exercise and Sport Sciences Reviews 2017; 45: 223-229
  • 64 Williams PE, Goldspink G. Connective tissue changes in immobilised muscle. Journal of Anatomy 1984; 138: 343-350
  • 65 Langevin HM. et al. Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet Disord 2011; 12: 203
  • 66 Aird L, Samuel D, Stokes M. Quadriceps muscle tone, elasticity and stiffness in older males: Reliability and symmetry using the MyotonPRO. Archives of Gerontology and Geriatrics 2012; 55: e31-e39
  • 67 Masi AT, Hannon JC. Human resting muscle tone (HRMT): narrative introduction and modern concepts. J Bodyw Mov Ther 2008; 12: 320-32.
  • 68 Koes BW, van Tulder MW, Thomas S. Diagnosis and treatment of low back pain. British Medical Journal 2006; 332: 1430-1434a
  • 69 Chen CK, Nizar AJ. Myofascial pain syndrome in chronic back pain patients. The Korean journal of pain 2011; 24: 100
  • 70 Hestbaek L, Leboeuf-Yde C, Manniche C. Low back pain: what is the long-term course? A review of studies of general patient populations. Eur Spine J 2003; 12: 149-65
  • 71 Chenot J-F. et al. Clinical practice guideline: Non-specific low back pain. Dtsch Arztebl 2017; 114: 883-890
  • 72 Itz CJ. et al. Clinical course of non-specific low back pain: a systematic review of prospective cohort studies set in primary care. Eur J Pain 2013; 17: 5-15
  • 73 Stecco A. et al. Fascial Components of the Myofascial Pain Syndrome. Current Pain and Headache Reports 2013; 17: 8
  • 74 Gerwin RD. Classification, epidemiology, and natural history of myofascial pain syndrome. Current pain and headache reports 2001; 5: 412-420
  • 75 Gracely RH. et al. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis & Rheumatism 2002; 46: 1333-1343
  • 76 Schilder A. et al. Electrical high-frequency stimulation of the human thoracolumbar fascia evokes long-term potentiation-like pain amplification. Pain 2016; 157: 2309-2317
  • 77 Melzack R. The McGill Pain Questionnaire: Major properties and scoring methods. PAIN 1975; 1 p 277-299
  • 78 Mücke M. et al. Quantitative sensorische Testung. Der Schmerz 2014; 28: 635-648
  • 79 Redegeld M. et al. Qualitätssicherung in der Therapie chronischen Schmerzes Ergebnisse einer Arbeitsgruppe der Deutschen Gesellschaft zum Studium des Schmerzes (DGSS) zur psychologischen Diagnostik. Der Schmerz 1995; 9: 151-158
  • 80 Schilder A. et al. Assessment of pain quality reveals distinct differences between nociceptive innervation of low back fascia and muscle in humans. Pain reports 2018; 3: 3
  • 81 Yu JS. Pathologic and post-operative conditions of the plantar fascia: review of MR imaging appearances. Skeletal Radiology 2000; 29: 491-501
  • 82 Chopra J. et al. Re-evaluation of superficial fascia of anterior abdominal wall: a computed tomographic study. Surgical and radiologic anatomy 2011; 33: 843-849
  • 83 Drakonaki E, Allen G, Wilson D. Ultrasound elastography for musculoskeletal applications. The British Journal of Radiology 2012; 85: 1435-1445
  • 84 Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review. Current medical imaging reviews 2011; 7: 328-339
  • 85 Wu C-H. et al. Musculoskeletal Sonoelastography: A Focused Review of its Diagnostic Applications for Evaluating Tendons and Fascia. Journal of Medical Ultrasound 2012; 20: 79-86
  • 86 Langevin HM. et al. Ultrasound evidence of altered lumbar connective tissue structure in human subjects with chronic low back pain. BMC Musculoskeletal Disorders 2009; 10: 151