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AbsTR AcT

SGLT2 inhibitors increase renal glucose excretion and thus de-
crease both fasting and postprandial plasma glucose levels. The 
effects of SGLT2 inhibition outweigh those on glycemic control 
and are also associated with the induction of hemodynamic 
changes that improve cardiovascular and renal function in peo-
ple with type 2 diabetes. The exact mechanisms have not yet 
been completely clarified. This review is focused on the poten-
tial relationship between SGLT2 inhibition and sympathetic 
nerve activity. There is accumulating evidence for a suppressive 
effect of SGLT2 inhibitors on the sympathetic nerve tone, which 
might be a putative mechanism for cardiovascular protection 
in subjects with type 2 diabetes.

The Role of the Kidney in Diabetes and its 
Chronic Complications
The kidneys play a key role in glucose homeostasis. They use glu-
cose as a metabolic fuel, produce about 25 % of endogenous glu-
cose, and reabsorb filtered glucose by the sodium-glucose co-trans-
porters SGLT1 and mainly SGLT2 located in the early proximal tu-
bules. The SGLT2 transporter is characterized by low affinity and 
high capacity. The maximum renal capacity for glucose reabsorp-
tion and the renal threshold for glucose are elevated in the diabe-
tes population and, therefore, represent essential mechanisms in 
the pathogenesis of hyperglycemia. SGLT2 inhibitors counteract 
these mechanisms, thus, increasing glucose excretion and decreas-
ing both fasting and postprandial plasma glucose levels. Although 
these effects are insulin independent, they lead to improved insu-
lin secretion and insulin action. The beneficial effects of SGLT2 in-
hibition outweigh those on glycemic control. Accumulating data 
have demonstrated that suppressed renal glucose reabsorption re-
sults in decline in arterial blood pressure, decrease in the deleteri-

ous effect of glucotoxicity and induction of hemodynamic chang-
es that improve cardiovascular and renal function in subjects with 
type 2 diabetes [1].

Type 2 diabetes is a cardio-metabolic disease leading to the de-
velopment of micro- and macrovascular complications. While hy-
perglycemia is a proven major risk factor for microvascular compli-
cations such as nephropathy, retinopathy, neuropathy [2, 3], the 
elevated glucose levels are one of the relatively weaker risk factors 
for macrovascular complications – myocardial infarction, stroke, 
and peripheral vascular disease [2]. Dyslipidemia, hypertension, 
obesity, insulin resistance, and prothrombotic state have been rec-
ognized as more potent risk factors for macroangiopathy. By 2015, 
research data had shown that neither antihyperglycemic medica-
tions [4–6] nor lifestyle changes [7] had the potential to reduce 
cardiovascular risk in people with type 2 diabetes. In recent years, 
cardiovascular benefits associated with the use of two classes of 
antihyperglycemic drugs – SGLT2 inhibitors and GLP-1 receptor ag-
onists in patients with type 2 diabetes, have been demonstrated 
and have changed the overall concept of the choice of antihyperg-
lycemic therapy in type 2 diabetes [8, 9].
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Putative Cardio-protective Mechanisms of 
SGLT2 Inhibition
The exact mechanisms underlying the cardio-protective role of 
SGLT2 inhibition is still debatable [10]. Even the landmark CVOT of 
empagliflozin – EMPA-REG OUTCOME has not explored the specif-
ic mechanisms responsible for cardiovascular benefits achieved 
with the administration of SGLT2 inhibitors.

The hemodynamic effects, such as reduction of arterial blood 
pressure and arterial stiffness, are due to the potential diuretic ef-
fect of SGLT2 inhibition. This is associated with improvement of left 
ventricular function, by reducing intra- and extracellular volume. 
Therefore, natriuresis and osmotic diuresis are potential factors 
that probably contribute to cardiovascular protection. These data 
have been proven in patients with type 2 diabetes and normal kid-
ney function or the presence of chronic kidney disease stages 1 
through 3a [11–22]. However, the osmotic diuresis hypothesis 
could not explain blood pressure lowering effects of SGLT2 inhibi-
tion across the whole spectrum of kidney function deterioration. 
More recent data from meta-analyses, including studies of patients 
with more advanced chronic kidney disease stages 3b–4, have 
demonstrated similar reduction of blood pressure, despite the de-
cline in glycosuria in the diabetic population with advanced-stage 
chronic kidney disease [23]. Although dapagliflozin does not affect 
HbA1c level in patients with type 2 diabetes and chronic kidney dis-
ease stages 3b–4, it significantly decreases blood pressure and 
weight in the studied cohort [24]. Therefore, alternate pathways 
might be considered in the underlying mechanisms, which include 
the integrated effects of both hemodynamic and metabolic com-
ponents [23]. One of the involved metabolic factors probably is 
weight loss, which could account for about 40 % of the change in 
blood pressure due to SGLT2 inhibition [25, 26].

The ketone hypothesis is also of scientific interest. The transi-
tion from glucose to fatty oxidation in the liver increases the plas-
ma concentrations of ketones and they preferentially begin to be 
used as a fuel in the myocardium. This is considered to be related 
to improvement of cardiac metabolism and bioenergy [27–30]. 
The ketogenic hypothesis not only tries to explain the benefits of 
SGLT2 inhibitors for heart failure risk, but also may partially explain 
the class antihypertensive effect. Recent data implicate the poten-
tial for increased ketones, in particular β-hydroxybutyrate, associ-
ated with SGLT2 inhibition contributing to blood pressure lowering 
in a murine model [31]. Contrary to the above, some recent data 
propose the concept that circulating ketone bodies increased by 
SGLT2 inhibitors ameliorate the inflammatory process thus decreas-
ing CV risk in diabetic patients rather than exert a direct effect on 
the heart [32]. In line with the above are data from hemodynamic 
and cardiac function measurements and myocardial uptake of glu-
cose, lactate, free fatty acids or ketones, obtained during regional 
myocardial ischemia injury followed by reperfusion in healthy 
swines, which demonstrate the preserving cardiac contractile func-
tion independently of myocardial substrate utilization [33]. Since 
the decrease in HbA1c in EMPA-REG OUTCOME trial was about 
0.25 %, this improvement in glycemic control could not explain the 
cardio-protective effect of empagliflozin [1, 8]. Moreover, the ben-
eficial effect of good glycemic control on cardiovascular risk is ex-
pected after many years [34, 35], while a decrease in cardiovascu-

lar mortality and hospitalizations for heart failure following admin-
istration of empagliflozin have been observed within the first three 
months. Another potential mechanism is thought to be the expect-
ed weight loss and especially the decrease of visceral fat area, which 
is tightly related to increased insulin sensitivity, but these effects 
are also unlikely to occur within the first 3 months. Other potential 
mechanisms that may explain the cardio-protective effect of em-
pagliflozin are the decreased serum uric acid levels, low-grade in-
flammation, oxidative stress and albuminuria, as well as the activa-
tion of angiotensin АТ2 receptors, increased glucagon secretion, 
improved lipid profile, and changes in plasma electrolyte concen-
tration [1, 8, 10]. Convincing evidence in support of these mecha-
nisms is lacking. Moreover, SGLT2 inhibitors have been found to re-
duce the levels of troponin and the N-terminal fragment of the 
brain natriuretic peptide prohormone in adults with type 2 diabe-
tes [36]. A direct effect of SGLT2 inhibition on the myocardium has 
been suggested. SGLT2 inhibitors suppress the myocardial Na + /H +  
transporter, leading to a decrease in cytosolic sodium and vasodi-
lation [37–39]. SGLT2 inhibitors have also been shown to play a role 
in the production of cytokines and in the decrease of epicardial fat 
volume [40–42], which is associated with a beneficial effect on my-
ocardial inflammation, necrosis and fibrosis in subjects with type 
2 diabetes and visceral obesity [36, 43, 44]. These data require fur-
ther exploration to determine whether the observed changes are 
directly related to the cardiovascular benefits in subjects using 
these drugs [45].

Blood pressure lowering effect of SGLT2 inhibitors seems to be 
a cornerstone in their cardiovascular protection. SGLT2 inhibitors 
reduce systolic and diastolic blood pressure and improve its circa-
dian rhythm without any change in heart rate, which is suggested 
to be based on probable direct suppression of sympathetic nerve 
activity [1, 10]. In addition to the negative calorie balance, weight 
loss and osmotic diuresis, they also suppress sodium–hydrogen 
antiporter 3, cause proximal tubule osmotic imbalance inde-
pendently of glycemia, which results in increased tubular Na +  se-
cretion.

Since sympathetic hyperactivity is a consequence of insulin re-
sistance and is a typical characteristic of patients with type 2 dia-
betes, the potential inhibitory effect of these drugs on sympathet-
ic tone might contribute to a reduction in blood pressure and res-
toration of the normal circadian rhythm and thus play a pivotal role 
in the reduction of cardiovascular risk [46].

Main Features of Cardiac Autonomic 
Neuropathy in Diabetes
Cardiac autonomic neuropathy in subjects with diabetes presents 
as a sympatho-vagal imbalance with a predominance of sympa-
thetic nerve activity and clinical evidence of decreased heart rate 
variability, tachycardia at rest, orthostatic hypotension, and in-
creased risk of sudden cardiac death [47]. Tight glycemic control 
is not sufficient to reduce the risk of cardiac autonomic neuropathy 
in people with type 2 diabetes. A multifactorial interventions tar-
geting not only glycemia, but other cardiovascular risk factors as 
well, have been shown to reduce the risk of cardiac autonomic neu-
ropathy by up to 60 % of subjects with type 2 diabetes [48].
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Cardiac autonomic neuropathy is an independent risk factor for 
cardiovascular mortality [49]. The ACCORD study in 8000 patients 
with type 2 diabetes has provided evidence for a 2.14-fold higher 
risk of overall and cardiovascular mortality in individuals with dia-
betes and cardiac autonomic neuropathy, after adjusting for tradi-
tional cardiovascular risks factors including the use of different 
classes of medications [50]. Data from other two large studies in-
volving more than 31 000 subjects with cardiovascular disease and/
or diabetes, followed for an average of 5 years have demonstrated 
that heart rate, as an indirect marker of cardiac autonomic func-
tion, analyzed as a categorical variable (resting heart rate  < 70 bpm 
and resting heart rate  > 70 bpm), is associated with a significant in-
crease in cardiovascular morbidity and overall mortality [51], and 
the restoration of autonomic balance is of great importance in de-
creasing cardiovascular events, heart failure, and early mortality in 
subjects with diabetes. One of the central mechanisms for the de-
velopment of cardiac autonomic neuropathy is the impaired hypo-
thalamic regulation due to a dopamine deficiency, which leads to 
sympathetic dominance, increased insulin resistance and manifes-
tation of the metabolic syndrome. It is considered that some of the 
newer antihyperglycemic drug classes, namely SGLT2 inhibitors, 
have the potential to improve autonomic function by reducing sym-
pathetic nerve activity and should be considered when choosing 
therapy in patients with both diabetes and overt cardiac autonom-
ic neuropathy [52].

Data from Clinical and Animal Studies for the 
Relation between SGLT2 Inhibition and 
Sympathetic Nerve Activity
EMPA-REG OUTCOME study data support the putative suppressive 
effect of SGLT2 inhibition on sympathetic hyperactivity. This trial 
has shown no reflex tachycardia despite the reported decrease in 
vascular volume and significant decline in blood pressure by 
2–5 mmHg. These findings might be due to a relative reduction of 
sympathetic nerve activity, nevertheless other neurohormonal fac-
tors may also play an important role [8, 53–55]. ▶Tables 1– 3 pres-
ent available data from clinical studies regarding the effects of em-
pagliflozin (▶Table 1), dapagliflozin (▶Table 2), canagliflozin 
(▶Table 3), and ipragliflozin (▶Table 3) on blood pressure and 
heart rate. A subanalysis of the studies with luseogliflozin in sub-
jects with type 2 diabetes has not shown any change in heart rate 
in those with resting heart rate  < 70 bpm. However, the adminis-
tration of the drug has been associated with a decrease in heart rate 
in those with higher resting heart rate  > 70 bpm, suggesting that 
SGLT2 inhibitors probably cause a decrease in sympathetic tone 
only in people with both type 2 diabetes and sympathetic hyper-
activity [81, 82].

Data from experimental models are in line with the above men-
tioned findings in humans. The effect of SGLT2 inhibitors on blood 
pressure and sympathetic nerve activity has been investigated in 
animal models with obesity and/or metabolic syndrome and arte-
rial hypertension with impaired circadian rhythm of blood pressure 
and sympathetic nerve activity. It has been shown that treatment 
with SGLT2 inhibitors significantly decreases blood pressure and 
normalizes its circadian rhythm without any change in heart rate. 

Therefore, it is considered that the inhibition of SGLT2 transport-
ers might probably improve the circadian rhythm of sympathetic 
tone through suppression of sympathetic activity mainly during 
the night [83–85]. Norepinephrine is a major sympathetic neuro-
transmitter, which up-regulates SGLT2 protein expression in prox-
imal tubule cells and its translocation to the cell surface in humans. 
Administration of dapagliflozin has been reported to exert a sup-
pressive effect on the norepinephrine turnover in the brown adi-
pose tissue of mice [86]. Moreover, SGLT2 inhibition leads to a de-
crease in tyrosine hydroxylase and norepinephrine levels in the kid-
ney and heart of murine models, again demonstrating sympathetic 
nerve inhibitory potential of SGLT2 inhibitors [87, 88]. A direct tu-
bular effect was observed after intraperitoneal injection of luse-
ogliflozin in experimental models without diabetes, regardless of 
the change in plasma glucose levels and in the absence of hemod-
ynamic renal effects. This is in support of the notion that the mech-
anism of tubulo-glomerular feedback is unlikely to be triggered 
[89]. These data provide evidence for an important cross-talk be-
tween sympathetic nervous system regulation and SGLT2 inhibi-
tion.

SGLT2 Inhibition Counteracts Sympathetic 
Nerve Hyperactivity – Pros
In the diabetic population, sympathetic nerve activity is primarily 
determined by afferent signals from the kidneys, which are richly 
innervated by chemoreceptors and baroreceptors that send signals 
to the brain [90]. It is highly likely that the excessive glucose resorp-
tion in the proximal renal tubules is involved in the activation of the 
renal autonomic nerves resulting in central sympathetic hyperac-
tivity. This overstimulation of the sympathetic nervous system 
might be exacerbated by disruption of the negative feedback mech-
anism due to the decreased sensitivity of baroreceptor reflexes, 
which, in turn, increases the efferent sympathetic response to the 
heart, blood vessels and kidneys [91–94]. The change in the hemo-
dynamics and homeostasis of fluid balance - a major risk factor for 
heart failure in type 2 diabetes, also contributes to the sympathet-
ic overactivity [82].

It has been suggested that SGLT2 inhibitors decline sympathet-
ic nerve tone through a decrease in the renal afferent nerve activ-
ity and suppression of the central reflex mechanisms, which is at 
the basis of the generalized sympathetic hyperactivity [95], thus 
exerting a beneficial effect on the hemodynamics of fluid balance. 
There is significant volume loading in subjects with type 2 diabe-
tes and SGLT2 inhibitor administration leading to subsequent tran-
sient osmotic diuresis, which correct it. This phenomenon might 
be explained by the decrease in the sympathetic nerve outflow to 
the kidneys. This means that the renal pressure-natriuresis curve 
shifts to the left [95]. SGLT2 inhibition also corrects hypoxia at the 
level of the proximal renal tubules, thereby reducing hemodynam-
ic congestion by decreasing sympathetic hyperactivity [82] 
(▶Table 4).

Assuming that after the administration of an SGLT2 inhibitor the 
load on the heart is reduced by lowering blood pressure, improv-
ing its variability, and optimizing fluid volume by improving the 
renal pressure-diuresis curve; and afterload is diminished due to a 
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moderate vasodilatation and a lack of compensatory tachycardia, 
the data on decreased incidence of hospitalizations for heart fail-
ure and cardiovascular mortality in subjects with type 2 diabetes 
are not surprising.

More recent data shift the focus from osmotic diuresis to the 
hypothesis that SGLT2 inhibitors might act like denervation agents 
in the kidney. It has been shown that renal denervation reduces 
blood pressure and improves glycemic control in humans [96]. 

▶Table 1  Available data from clinical studies in type 2 diabetes regarding the effects of empagliflozin on arterial blood pressure and heart rate.

study Duration Dose change in sbP 
(mmHg)

change in DbP 
(mmHg)

change in HR 
(bpm)

Cherney et al. [57] * 8 weeks 25 mg  − 1.5  − 1.4  − 1.2

Häring et al. [58] 24 weeks 10 mg
25 mg

 − 4.1
 − 3.5

 − 2.1
 − 2.2

No change

Chilton et al. [20] 12 weeks
24 weeks

10/25 mg  − 3.9
 − 1.5

 − 3.6
 − 1.3

 − 0.6
 − 0.8

Kovacs et al. [59] 24 weeks 10 mg
25 mg

 − 3.14
 − 4.00

 − 1.49
 − 2.21

No change

Nishimura et al. [60] 4 weeks 10 mg
25 mg

 − 4.9
 − 5.9

 − 1.3
 − 5.4

0.2
 − 1.7

Häring et al. [61] 24 weeks 10 mg
25 mg

 − 4.5
 − 5.2 

 − 2.0
 − 1.6

No change

Tikkanen et al. [53] 12 weeks 10 mg
25 mg

 − 2.95
 − 3.68

 − 1.04
 − 1.40

 − 0.17
 − 0.74 

Rosenstock et al. [62] 78 weeks 10 mg
25 mg

 − 4.1
 − 2.4

 − 2.9
 − 1.5

No change

Rosenstock et al. [63] 52 weeks 10 mg
25 mg

 − 3.4
 − 3.8

 − 1.2
 − 2.5

No change

Ferrannini et al. [64] 78 weeks 10 mg
25 mg

0.1
 − 1.7

 − 0.16
 − 2.2

No change

Adapted from Wan N et al. 2018 [56].  * The studied population is with type 1 diabetes. SBP: Systolic blood pressure; DBP: Diastolic blood pressure; HR: 
Heart rate.

▶Table 2  Available data from clinical studies in type 2 diabetes regarding the effects of dapagliflozin on arterial blood pressure and heart rate.

study Duration Dose change in sbP 
(mmHg)

change in DbP 
(mmHg)

change in HR 
(bpm)

Wilding et al. [65] 104 weeks 5 − 10 mg
10 mg

 − 2.6
 − 2.9

 − 7.5
 − 4.0

 − 1.3
 − 1.2

Nauck et al. [66] 52 weeks 2.5 − 10 mg  − 4.3  − 1.6  − 0.1

List et al. [67] 12 weeks 2.5 mg
5 mg
10 mg
20 mg
50 mg

 − 3.1
 − 2.9
 − 6.4
 − 4.3
 − 2.6

0.8
 − 0.3
 − 2.6
 − 0.5

0.1

 − 1.4
 − 1.0
 − 0.03

1.9
 − 2.3

Sjöström et al. [25]
with AH
without AH

24 weeks 10 mg
 − 3.6
 − 2.6

 − 1.2
 − 1.2

 − 0.5
0.1

Wilding et al. [68] 48 weeks 2.5 mg
5 mg
10 mg

 − 5.30
 − 4.33
 − 4.09

 − 2.96
 − 2.64
 − 2.85

 − 1.44
 − 1.25
 − 0.84

Adapted from Wan N et al. 2018 [56]. SBP: Systolic blood pressure; DBP: Diastolic blood pressure; HR: Heart rate; AH: Arterial hypertension.
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Based on these findings, it has been hypothesized that norepineph-
rine increases SGLT2 expression and thus elevates blood pressure 
and impairs glucose homeostasis. A more recent study, exploring 
the direct interaction between sympathetic hyperactivity and 
SGLT2 regulation in a neurogenic hypertensive mouse model, have 
reported that downregulation of the renal sympathetic tone via ei-
ther denervation or SGLT2 inhibition lowers SGLT2 expression and 
blood pressure. Dapagliflozin decreases tyrosine hydroxylase in 
heart tissue and norepinephrine content in the kidney without af-
fecting plasma renin levels, indicating a reduced sympathetic nerve 
function due to SGLT2 inhibition [88].

Other recent studies indicate that some of the potential mech-
anisms associated with the reduction of sympathetic nerve activi-
ty after the administration of an SGLT2 inhibitor are the decreased 
insulin and leptin levels [97, 98], improved insulin sensitivity and 
decreased hyperinsulinemia, which suppress carotid body activa-

tion [99]. Reducing the sodium content that inhibits the activation 
of organum vasculosum laminae terminalis seems to be another 
possible mechanism [100] (▶Table 4).

The putative effect of SGLT2 inhibitors on sympathetic nerve 
activity is what distinguish them from other diuretics. The main 
differences with loop and thiazide diuretics are: 1) SGLT2 inhibitors 
do not lead to reflex activation of the sympathetic nervous system, 
as there is no increase in heart rate in the presence of a significant 
decrease in arterial blood pressure; 2) thiazide diuretics exert their 
effects at the level of the distal renal tubules, whereas SGLT2 inhib-
itors act at the level of the proximal renal tubules, proximally to 
macula densa, and cause increased natriuresis to the juxtaglomer-
ular apparatus [101, 102]; and thiazide and loop diuretics cause hy-
perglycemia and hyperuricemia, whereas SGLT2 inhibitors decrease 
plasma glucose and uric acid levels. It has been assumed that SGLT2 
inhibitors restore tubular-glomerular feedback, which leads to va-

▶Table 3  Available data from clinical studies in type 2 diabetes regarding the effects of canagliflozin and ipragliflozin on arterial blood pressure and 
heart rate.

study Duration Dose change in sbP 
(mmHg)

change in DbP 
(mmHg)

change in HR 
(bpm)

Cefalu et al. [69] 52 weeks 100 mg
300 mg

 − 3.3
 − 4.6

 − 1.8
 − 2.5

 − 1.1
 − 1.2

Devineni et al. 
[70]

4 weeks 100 mg
300 mg

 − 10.7
 − 8.8 

 − 7.1
 − 3.3 

No change

Rosenstock et al. 
[71]

12 weeks 50 mg
100 mg
200 mg
300 mg
2 × 300 mg

 − 1.3
1.0

 − 2.1
 − 4.9
 − 3.6

 − 0.1
 − 0.2
 − 1.7
 − 2.1
 − 2.4

 − 0.2
 − 0.2

0.6
 − 1.7

0.2

Leiter et al. [72] 104 weeks 100 mg
300 mg

 − 2.0
 − 3.1

 − 1.3
 − 2.2

 − 0.1
 − 0.2

Sha et al. [73] 2 weeks 30 mg
100 mg
200 mg
400 mg
2 × 300 mg

 − 10.9
 − 4.7

 − 11.5
 − 9.4
 − 9.8 

 − 3.9
0.2

 − 4.5
 − 3.4
 − 2.9 

 − 7.1
 − 9.7
 − 5.1
 − 4.9
 − 5.5

Lavalle-González 
et al. [74]

52 weeks 100 mg
300 mg

 − 3.5
 − 4.7

 − 1.8
 − 1.8

 − 1.3
 − 1.9

Stenlöf et al. [75] 26 weeks 100 mg
300 mg

 − 3.3
 − 5.0

 − 1.7
 − 2.1

 − 1.6
 − 0.5

Wilding et al. [76] 52 weeks 100 mg
300 mg

 − 3.1
 − 2.9

 − 2.2
 − 1.7

 − 1.2
 − 0.4

Schernthaner et 
al. [77]

52 weeks 300 mg  − 5.1  − 3.0  − 0.1

Forst et al. [78] 26 weeks
52 weeks

100 mg
300 mg
100 mg
300 mg

 − 5.3
 − 4.7
 − 3.4
 − 3.7

 − 3.3
 − 3.5
 − 2.5
 − 2.7

 − 0.3
 − 1.3

0.5
 − 1.0

Yale et al. [79] 26 weeks 100 mg
300 mg

 − 6.1
 − 6.4

 − 2.6
 − 3.5

 − 1.9
 − 1.1

Maegawa et al. 
[80] * 

12 weeks 25–100 mg  − 4.1  − 2.2  − 0.9

Adapted from Wan N et al. 2018 [56].  * The only study with ipragliflozin. SBP: Systolic blood pressure; DBP: Diastolic blood pressure; HR: Heart rate.
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soconstriction of afferent arterioles and reduction of hyperfiltra-
tion by decreasing intraglomerular pressure [102]. Increased sodi-
um delivery to macula densa also affects other neuro-hormonal 
factors such as the renin angiotensin aldosterone system [46, 103].

SGLT2 Inhibition Counteracts Sympathetic 
Nerve Hyperactivity – Cons
Reduction in arterial blood pressure has been observed in renal 
transplant patients on SGLT2 inhibitors. Since the transplanted kid-
ney is denervated, this findings reject a direct neurogenic effect of 
SGLT2 inhibition [104]. The reduced plasma volume has been sug-
gested to be the most likely underlying mechanism in this case. 
Plasma volume is tightly controlled, rapidly recovering when al-
tered through multiple compensatory mechanisms. Just a 5 % de-
crease in plasma volume is necessary to activate the sympathetic 
nervous system and the renin angiotensin aldosterone system and 
to suppress natriuretic peptides, which results in activation of water 
and sodium reabsorption in the kidney and recovery of baseline 
plasma volume. The increase of plasma osmolality is also related 
to fluid release into the extracellular space. Plasma volume is re-
tained reduced even after years of treatment with SGLT2 inhibitors, 
because the osmotic effect of glucose and the presence of more 
sodium outside the proximal renal tubules is perceived by the 
nephron as a sign of excessive filtration, such as this occurs with in-
creased plasma volume or sodium retention. In fact, plasma vol-
ume and sodium are not increased [105], and even the total 
amount of sodium in the body is reduced after administration of 
an SGLT2 inhibitor [14]. Nevertheless, these signs result in home-
ostatic changes, including a new steady state of the body associat-
ed with reduced plasma volume [105].

Contrary to the above, data from some studies have implied not 
only the lack of effect on sympathetic nerve activity, but also stim-
ulation of the sympathetic nerve tone as a result of SGLT2 inhibi-

tion. Some previous studies have shown that the increased hepat-
ic glucose production, observed in subjects treated with dapagli-
flozin, cannot be explained only by insulin suppression and direct 
stimulation of glucagon by alpha cells [106]. It has been presumed 
that this process might be mediated by stimulation of the renal 
sympathetic nerves, which communicate directly with the liver 
through the portal bloodstream, or might be indirectly stimulated 
by the renal sympathetic nerves via impulses to the central nerv-
ous system and subsequently generation of efferent signals to the 
liver [107]. In line with this, two other studies have not demonstrat-
ed a beneficial effect of the combination of a DPP-4 inhibitor and 
an SGLT2 inhibitor on glucose levels, highlighting the role of other 
factors beyond elevated glucagon levels and decreased insulin lev-
els, such as renal sympathetic nerve activation, which is likely to 
play a significant role in stimulating liver glucose production 
[108, 109]. However, if the effects on glucagon have been associ-
ated with generalized sympathetic nerve hyperactivity, the heart 
rate would have increased rather than decreased in the EMPAREG 
OUTCOME study [55].

A study in patients with type 1 diabetes without chronic com-
plications treated with empagliflozin, applying clamp technique, 
has shown that heart rate variability and plasma adrenaline and 
norepinephrine concentrations remain unchanged in both clamps 
under euglycemic and hyperglycemic conditions [57]. There has 
also been no change in muscle sympathetic nerve activity and heart 
rate, despite increased urine volume, following short-term admin-
istration of emagliflozin in patients with type 2 diabetes [110]. 
Therefore, further prospective studies focusing on the relationship 
between SGLT2 inhibition and sympathetic nervous system func-
tion are needed. Data from EMBODY trial, a prospective, multi-
center, randomized, double-blind, placebo-controlled study in pa-
tients with acute myocardial infarction and type 2 diabetes, will 
add further clarity on the effect of empagliflozin on sympathetic 
nerve activity [111].

▶Table 4  The putative mechanisms, which determine the effects of SGLT2 inhibition on the sympathetic nervous system.

central nervous system Kidney Heart Vessels

ketosis
↓hyperinsulinemia

 + 
↓hyperleptinemia

↓
↓activity of the carotid body
↓activity of the afferent renal nerves

 + 
↓activity of OVLT

↓
↓sympathetic impulse to the heart

 + 
↓sympathetic impulse to the vessels

 + 
↓sympathetic impulse to the kidney

↓tubular glucose reabsorption
  + 

↓ Na
 + 

↓tubulo-interstitial load
 + 

↓interstitial hypoxia
↓

↓ activity of the afferent renal 
nerves

 + 
↓ activity of OVLT

↓
↓sympathetic impulse to the 
kidney from CNS

↓sympathetic impulse to the 
heart

↓
↓volume loading

 + 
↓ fibrosis

↓sympathetic impulse to the 
vessels

 + 
correction of the
fluid retention

 + 
↓ hypoxia

 + 
↓ RAAS

 + 
↓ neprilyzin activity

↓
↑vascular reactivity
↑natriuretic peptides

Adapted from Wan N et al. 2018 [56], Sano M. 2017 [83], and Sano M. 2018 [95]. OVLT: Organum vasculosum of the lamina terminalis; CNS: Central 
nervous system; RAAS: Renin-angiotensin-aldosterone system.
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Conclusion
In summary, there is accumulating evidence on the putative sup-
pressive effect of SGLT2 inhibition on sympathetic nerve activity in 
subjects with type 2 diabetes, but still there are a lot of controver-
sies and a need for further research in the field to address this issue 
and to answer the unresolved questions.
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