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ABSTRACT

Personalized precision medicine requires highly accurate di-

agnostics. While radiological research has focused on scanner

and sequence technologies in recent decades, applications of

artificial intelligence are increasingly attracting scientific

interest as they could substantially expand the possibility of

objective quantification and diagnostic or prognostic use of

image information.

In this context, the term “radiomics” describes the extraction

of quantitative features from imaging data such as those ob-

tained from computed tomography or magnetic resonance

imaging examinations. These features are associated with

predictive goals such as diagnosis or prognosis using machine

learning models. It is believed that the integrative assessment

of the feature patterns thus obtained, in combination with

clinical, molecular and genetic data, can enable a more accu-

rate characterization of the pathophysiology of diseases and

more precise prediction of therapy response and outcome.

This review describes the classical radiomics approach and

discusses the existing very large variability of approaches.

Finally, it outlines the research directions in which the inter-

disciplinary field of radiology and computer science is mov-

ing, characterized by increasingly close collaborations and

the need for new educational concepts. The aim is to provide

a basis for responsible and comprehensible handling of the

data and analytical methods used.

Key points:
▪ Radiomics is playing an increasingly important role in

imaging research.

▪ Radiomics has great potential to meet the requirements

of precision medicine.

▪ Radiomics analysis is still subject to great variability.

▪ There is a need for quality-assured application of radiomics

in medicine.

Citation Format
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ZUSAMMENFASSUNG

Personalisierte Präzisionsmedizin setzt eine hochakkurate Di-

agnostik voraus. Während die radiologische Forschung sich in

den letzten Jahrzehnten mit Scanner- und Sequenztechnolo-

gien beschäftigt hat, rücken zunehmend Anwendungen der

künstlichen Intelligenz in das wissenschaftliche Interesse, da

sie die Möglichkeit der objektiven Quantifizierung und diag-

nostischen bzw. prognostischen Nutzung von Bildinforma-

tionen substanziell erweitern könnten.

In diesem Zusammenhang beschreibt der Begriff „Radiomics“

die Extraktion quantitativer Merkmale aus Bilddaten wie zum

Beispiel von Computertomografie- oder Magnetresonanzto-

mografie-Untersuchungen. Diese Merkmale werden mithilfe

von Modellen des maschinellen Lernens mit Vorhersagezielen

wie Diagnose oder Prognose in Zusammenhang gebracht.

Man geht davon aus, dass die integrative Beurteilung der so

erhobenen Merkmalsmuster in Verbindung mit klinischen,

molekularen und genetischen Daten eine genauere Charak-

terisierung der Pathophysiologie von Erkrankungen sowie

eine präzisere Vorhersage von Therapieansprechen und Out-

come ermöglichen kann.

Review
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In dieser Übersichtsarbeit werden der klassische Radiomics-

Ansatz beschrieben und die bestehende sehr große Variabili-

tät an Zugängen diskutiert. Abschließend werden For-

schungsrichtungen skizziert, in die sich das von zunehmend

enger Kollaboration zwischen Radiologie und Computerwis-

senschaften und der Notwendigkeit neuer Ausbildungskon-

zepte gekennzeichnete interdisziplinäre Feld bewegt. Ziel ist

es, eine Grundlage für verantwortungsvollen, nachvollziehba-

ren Umgangmit eingebrachten Daten und angewandten Ana-

lysemethoden zu ermöglichen.

Introduction

The demands of personalized precision medicine require highly
accurate diagnostics. Although in recent decades radiological
research has focused on the evaluation of scanner and sequence
technologies for more accurate disease diagnosis, scientific inter-
est is now focused on current implementations of artificial intelli-
gence (AI) for optimized diagnostics. The implementation possibi-
lities for AI techniques in radiology are manifold: automated
lesion detection and characterization, creation of biobanks, dose
optimization, structured reporting and radiomics [2, 3]. For the
sake of completeness, it should not be forgotten that AI tech-
niques are also used in the latest generation of scanners to opti-
mize data acquisition itself.

The term “radiomics” describes the extraction of quantitative
features from image data such as examinations using computed
tomography (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET) and correlation with clinical, genetic
or molecular data using AI methods such as machine learning or
deep learning. The concept appears promising: using AI methods,
information can be extracted from image data that goes far
beyond what the human eye can detect. It is assumed that the as-
sessment of these characteristics and feature patterns obtained
from the image data when combined with clinical, molecular and
genetic data can enable a more precise characterization of the
pathophysiology of diseases as well as a statement on therapy re-
sponse and probable outcome. Some of the applied techniques
have been known for decades, but have been developed substan-
tially in recent years, opening up new approaches to the automa-
ted exploitation of image information. Publications on this topic
go back to the end of the 1940 s, and models such as neural net-
works were also intensively researched in the 1980 s [4]. Opti-
mized computing power together with methodological advances
and increasing availability of large amounts of data to facilitate
the training of models have led to a resumption of this work with
impressive results [5], resulting in a more timely and efficient
utilization of these techniques – a basis for subsequent potential
clinical implementation. The scope of application in imaging diag-
nostics is diverse and ranges from oncological to cardiac and mus-
culo-skeletal diagnostics.

Radiomics is playing an increasingly important role in imaging
research due to its great potential to meet the requirements of
precision medicine. Numerous studies provide an overview of the
underlying concepts [6, 7]. However, it should be noted that every
single step of radiomics analysis is subject to great variability. A
responsible, comprehensible handling of the submitted data and
applied analysis methods is therefore an indispensable basic re-
quirement. Due to the novel way of dealing with image data, an

even closer collaboration with medical imaging computing data
scientists will be required in the future, as well a restructuring of
radiological training.

Radiomics, which describes a subset of AI implementation pos-
sibilities in radiology, follows an explicit scheme according to
which image data is processed, segmented and analyzed. This
overview article will present and explain this analysis.

Radiomics Hands-on

The 6 Phases of Radiomics Analysis

A radiomics analysis can essentially be divided into 6 steps: (i) data
acquisition, (ii) definition of a region of interest (ROI), (iii) data
(pre) processing, (iv) feature extraction, (v) selection of the fea-
tures relevant to the problem and (vi) classification (▶ Fig. 1) [8].

Data Acquisition

The way in which the data are acquired has a significant influence
on the result of the radiomics analysis; therefore it is desirable to
use imaging protocols that are standardized, reproducible and
comparable [9]. For example, a study by Waugh et al. showed
that a higher time-to-repetition (TR) enables better discrimina-
tion of texture features in breast MRI [10]. In their publication,
Baessler et al. systematically tested the factors influencing the
choice of sequence in MRI on feature robustness [11]. A high-
resolution FLAIR sequence provided the highest feature robust-
ness. On the other hand, the T2-weighted sequence with lower
resolution acquired in comparison achieved the poorest feature
stability. There were also differences in robustness among the var-
ious feature groups (matrices). The shape and GLZLM (GrayLevel
Zone Length Matrix) groups achieved the highest robustness,
while the histogram-based features were the least robust [11].
For this reason, Lambin et al. call for a stratified approach to data
selection: detailed disclosure of imaging sequences, robust seg-
mentation e. g. by multiple evaluators, phantom studies and ima-
ging at different time points [9].

ROI Definition

Optimal ROI Size and Feature Maps

After data acquisition, the region of interest (ROI) is defined,
which describes the area over which further analysis will occur.
Most of the work related to radiomics deals with issues in oncolo-
gy, and the ROI is typically set to identify the location of a lesion
and apply the subsequent analysis accordingly. Here, too, there is
great variability in the methodology of the ROI definition, which in
turn has significant influence on the result. Three different ROI
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variants can be selected: an ROI that follows the contour of the
lesion, one that surrounds the entire lesion at right angles (bound-
ing box), and a partial ROI drawn in the center of a section of the
lesion [8]. Although bounding boxes are easier to create, and are
often sufficient, precise segmentation of lesions, evaluation of
shape, and more accurate analysis of contrast at the lesion edges
support a better understanding of the lesion. In addition to ROI
shape and placement, the ROI size also has a significant impact
on the result. Sikiö et al. demonstrated a correlation between
ROI size and feature stability [12]. Using a spatial resolution of
0.5 × 0.7mm2 and a slice thickness of 4mm, feature stability was
lowest with an 80 × 80 pixel ROI; the most stable features were
achieved with an ROI of 180 × 180 pixels [12].

Segmentation Methods

Segmentation has two tasks: 1) it can make the analysis more
specific by allowing explicit access within or outside a lesion;
2) the shape of the segmented lesion itself is a relevant source of
features revealed by segmentation. The segmentation of struc-
tures in medical image data is an intensively researched field,
and accordingly yields different possibilities. Manual segmenta-
tion is complemented by automated segmentation methods
using special algorithms such as region-growing, level sets for
even structures, or, most recently, successful deep learning meth-
ods such as so-called U-nets [13, 14]. To date, manual segmenta-
tion using an expert reader has been considered the gold standard
[15]. However, inter-reader reliability, the reproducibility of the
segmentation performed and time required to manually segment
large amounts of data are problematic [16, 17]. To reduce this
bias, Lambin et al. recommend multiple segmentation, multi-
reader analysis, exclusion of high noise segmentation and the
use of data from different breathing cycles [9]. In principle, de-
pending on the available data, segmentation can be performed
in both 2D and 3D image data. While 2D analysis allows less differ-
entiation in shape and lesions, it is more independent of often
highly variable imaging parameters such as slice thickness.

Image Processing and Preprocessing

Image preprocessing precedes the actual feature extraction. De-
pending on the data set, this includes interpolation, signal nor-
malization and gray value reduction.

Interpolation of the image data allows standardization of the
spatial resolution in data. Studies have shown that higher resolu-
tion allows optimized feature extraction. In a study by Mayerhoe-
fer et al., the best results were obtained with interpolation factors
of 2–4 [1]. Comparability of the features obtained in the analysis is
relevant for signal normalization. Three main approaches are
described in the literature: min/max, the Z score and mean ± 3σ
[18]. The “mean ± 3σ”method means that the intensities are nor-
malized within μ± 3σ, where μ describes the mean value of the
gray values within the ROI, and σ the standard deviation. Conse-
quently, gray values that are outside the range [μ – 3σ, μ + 3σ]
are not considered for the analysis.

The reduction of gray values in the form of so-called “binning”
during feature extraction results in an improvement in the signal-
to-noise (SNR) ratio. It maps the gray value range occurring in the
image as frequency distributions. Gray values used in the litera-
ture are 16, 32, 64, 128 and 256. In their study, Chen et al. recom-
mend using 32 gray values [19], whereas Mahmoud-Ghonheim et
al. use 128 [20].

Image preprocessing has a significant influence on feature ro-
bustness. Using a phantom, Wichtmann et al. systematically in-
vestigated the influence of spatial resolution, gray value reduction
and signal normalization on feature robustness [21]. They demon-
strated that only 4 features, skewness (histogram), volume [ml]
(shape), volume [vox] (shape) and run length non-uniformity
[RLNU] (Gray Level Run Length Matrix, GLRLM), RLNU (GLRLM),
remained robust over the variation of all parameters.

This clearly shows that specific recommendations for image
processing are necessary.

Feature Extraction

Features that are typically used for radiomics analyses can be
divided into 4 primary groups: First Order Statistics, Shape, and
Texture Features, as well as Features obtained by wavelet transfor-
mation of relevant image sections [16]. The group of Texture
Feature matrices include the matrices Gray Level Co-occurence
Matrix (GLCM), GLRLM, Gray Level Size Zone Matrix (GLSZM),
Gray Level Dependence Matrix (GLDM) and Neighboring Grey
Tone Difference Matrix (NGTDM). Multiple features are subsumed
under each of these matrices. It should be noted that there is
great variation in nomenclature, methodology and software im-
plementation [22]. ▶ Table 1 provides a typical overview of the
features of the individual matrices [23]. At the same time, efforts
are being made towards the invariance of features with respect to
protocols and corresponding standardization efforts [24]. The
selection of feature extractors is based on the expectation of
which characteristics are relevant for the analysis, and according-
ly, extractors are often chosen or constructed that are invariant
to, for example, global rotation or very low frequency gray value
changes.

Baessler et al. impressively demonstrated the diagnostic value
of texture features for the diagnosis of myocarditis using MRI.

▶ Fig. 1 The 6 phases of a radiomics analysis Depending on the
intermediate or final results, some or all of the analytical steps may
have to be repeated.
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Their study showed that texture features were able to differenti-
ate patients with biopsy-proven myocarditis from a healthy con-
trol group in the same way as conventional MRI parameters. How-
ever, unlike the texture features, the conventional MRI parameters
did not allow differentiation between a healthy control group and
patients with negative biopsy but clinical suspicion of myocarditis.
There was only a statically significant difference for the texture
features, especially RLNU and Gray Level Non-Uniformity [25].
Radiomics allowed a more precise diagnostic differentiation be-
tween patients with myocarditis and healthy controls compared
to the current standard.

Feature Selection

A major problem in radiomics analysis is the risk of overfitting the
data, which occurs especially when the number of features ex-
ceeds the number of records, thus severely limiting the meaning-
fulness of the analysis. Overfitting can be avoided by reducing
dimensionality, i. e. by selecting features to be used for analysis
and prediction. This can be based on two foundations: features
that are reproducible, robust, and non-redundant can be selected
without knowledge of the target issue and allow feature reduction
without bias [8, 16]. Feature selection based on how “informa-
tive” i. e. relevant, a feature is in the sense of the issue is an effec-
tive strategy, but also carries the risk of overfitting. Methods
developed from machine learning such as random forests allow
an effective selection of informative features while providing
robustness against large amounts of non-informative features
[26]. In this case, however, as described below, an evaluation of
the ultimately resulting predictive accuracy on an independent
validation data set that was neither used to train the model nor
to select the features is essential [27].

Test-re-test data sets can be used to assess the stability of fea-
tures, and only those stable features are then used for further
analysis. The concordance correlation coefficient (CCC), the

dynamic range (DR) and the correlation coefficient across all sam-
ples are suitable for testing robustness and reproducibility. Stud-
ies have shown that the number of features can thus be reduced
considerably, e. g. from 397 to 39 [16]. Furthermore, intra- and in-
ter-observer variability can be tested using the intraclass correla-
tion coefficient (ICC) and Bland-Altmann plots. In addition to the
statistical approaches listed here, machine learning methods such
as random forests can also be used to identify relevant features for
resolving the issue, e. g. the differentiation of benign/malignant.

Classification/Modeling

In addition to the statistical approaches listed here, supervised
learning approaches are currently most widespread, i. e. a ma-
chine is instructed using training data sets with knowledge of the
input vector (features) and the output value (target). After this
training the thus developed algorithm is applied to a test data
set. At this point the extracted characteristics are used for predic-
tion, whereby a key property of relevant methods such as support
vector machines or random forests is that they not only evaluate
the relationship between isolated features and the prediction
target, but can exploit feature groups as multivariate patterns. At
this juncture, very rapid progress is also underway, which, enabled
by deep learning techniques, increasingly combines the construc-
tion of features, their selection and prediction into common mod-
els.

Validation

The final step is corroboration using a validation data set. The pre-
dictive performance of the algorithm is tested using ROC/AUC
(receiver operating characteristic/area under the curve) analysis
[28]. The separation between data used for the training or devel-
opment of the prediction models and selection of features and
those used as validation data is essential. This is necessary to
ensure an overly optimistic assessment of the forecast accuracy.
As a middle course, cross-validation can be used, in which the
training and test data set are iteratively separated. It must be tak-
en into account that the respective test data could be the basis for
modeling decisions and therefore do not allow a completely inde-
pendent assessment – a separate validation data set is required
for this.

Parmar et al. have tested the stability and predictive perform-
ance of different feature selection and classifier methods [28].
Their results showed that among the different feature selection
methods, the Wilcoxon test-based method (WLCX) and mutual
information maximization (MIM) achieved the highest stability.
Among the classifiers, Bayesian achieved the best performance
with an AUC value of 0.64 (SD± 0.05).

Due to the great variability of radiomics analysis, standardiza-
tion of data collection, evaluation criteria and reporting is neces-
sary. To this end Lambin et al. have defined a “Radiomics Quality
Score” (RQS) [9], which describes a standardized analytical pro-
cess starting with data selection, through imaging, feature extrac-
tion, analysis and modeling, as well as report generation. Each of
these steps is divided into several sub-steps for which there are
scoring points. The maximum achievable score (total RQS) is 36.
The definition and introduction of an RQS is an essential step to-

▶ Table 1 Overview of the features of the individual matrices [21].

first order
statistics
features

shape and size
based features

textural features wavelet
features

grey-level
co-occurence
matrix based

energy compactness autocorrelation

entropy maximum 3D
Diameter

cluster prominence

kurtosis spherical
disproportion

gray-level
run-length matrix
based

maximum sphericity gray level non
uniformity

mean surface area run length non
uniformity
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wards a quality-assured application of radiomics in medicine,
which aims to counter the variability problem of analysis – which
already begins with the primary image data acquisition – by a
dedicated reporting of the individual steps. The introduction of
an RQS score seems particularly relevant in view of the expected
future connection of clinical decision support systems with radio-
mic data [9].

Where does this lead?

In addition to standard radiomics approaches that use predefined
features, recent development in the field of deep learning, the
possibility to combine feature design and predictive model train-
ing and to implement them with effective model architectures,
plays an increasingly important role in the use of complex image
data [7, 29]. On the one hand, this enables the use of image infor-
mation that is not covered by traditional features. On the other
hand, there is the problem of interpreting deep learning models,
the solution of which is increasingly the focus of research [30].

Summary

Radiomics is playing an increasingly important role in medical
imaging due to its great potential to meet the requirements of
precision medicine. However, it should be noted that every single
step of radiomics analysis is subject to great variability. A respon-
sible, comprehensible handling of the submitted data is therefore
an indispensable basic requirement. In the future, radiomics will
require an even closer collaboration with medical imaging
computing data scientists, as well a restructuring of radiological
training.
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