Synlett 2021; 32(03): 283-286
DOI: 10.1055/a-1290-8349
letter

Synthesis of 3-Benzylphthalide Derivatives by Using a TDAE Strategy

Maroua Ibrahimi
a   University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Ressources Matériaux, Valorisation et Écosystème (RME code LR19ES20), Zarzouna 7021, Bizerte, Tunisia
,
Omar Khoumeri
b   Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille 13385, France   Email: patrice.vanelle@univ-amu.fr
,
Raoudha Abderrahim
a   University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Ressources Matériaux, Valorisation et Écosystème (RME code LR19ES20), Zarzouna 7021, Bizerte, Tunisia
,
Thierry Terme
b   Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille 13385, France   Email: patrice.vanelle@univ-amu.fr
,
Patrice Vanelle
b   Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille 13385, France   Email: patrice.vanelle@univ-amu.fr
› Author Affiliations
This work was supported by the Centre National de la Recherche Scientifique and Aix-Marseille Université. We thank the Ministry of Higher Education of Tunisia for financing this work.


Abstract

A one-pot synthesis of new 3-benzylphthalide derivatives was developed by using a strategy based on tetrakis(dimethylamino)ethylene (TDAE). The reactions in the presence of TDAE of substituted benzyl chlorides with methyl 2-formylbenzoate or of substituted methyl-2-formylbenzoates with 4-nitrobenzyl chloride furnished the corresponding isobenzofuran-1(3H)-one products in moderate to good yields.

Supporting Information



Publication History

Received: 17 June 2020

Accepted after revision: 15 October 2020

Accepted Manuscript online:
15 October 2020

Article published online:
12 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Suzuki M, Ueoka R, Takada K, Okada S, Ohtsuka S, Ise Y, Matsunaga S. J. Nat. Prod. 2012; 75: 1192
  • 2 Yoshikawa M, Uchida E, Chatani N, Murakami N, Yamahara J. Chem. Pharm. Bull. 1992; 40: 3121
    • 3a Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213
    • 3b Li Y, Zhang J, Li D, Chen Y. Org. Lett. 2018; 20: 3296
    • 3c Renzetti A, Fukumoto K. Molecules 2019; 24: 824
    • 3d Tang Y, Meador RI. L, Malinchak CT, Harrison EE, McCaskey KA, Hempel MC, Funk TW. J. Org. Chem. 2020; 85: 1823
    • 3e Takakura R, Ban K, Sajiki H, Yoshinari Sawama Y. Synlett 2019; 30: 1919
    • 3f Nozawa-Kumada K, Kurosu S, Shigeno M, Kondo Y. Asian J. Org. Chem. 2019; 8: 1080
    • 3g Capaldo L, Riccardi R, Ravelli D, Fagnoni M. ACS Catal. 2018; 8: 304
    • 3h Mahendar L, Satyanarayana G. J. Org. Chem. 2016; 81: 7685
  • 4 Mukherjee S, Roy SC. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2018; 57: 85
    • 5a Takechi N, Aït-Mohand S, Médebielle M, Dolbier WR. Jr. Tetrahedron Lett. 2002; 43: 4317
    • 5b Pooput C, Médebielle M, Dolbier WR. Jr. Org. Lett. 2004; 6: 301
    • 5c Pooput C, Médebielle M, Dolbier WR. Jr. J. Org. Chem. 2006; 71: 3564
    • 6a Giuglio-Tonolo G, Terme T, Médebielle M, Vanelle P. Tetrahedron Lett. 2003; 44: 6433
    • 6b Giuglio-Tonolo G, Terme T, Médebielle M, Vanelle P. Tetrahedron Lett. 2004; 45: 5121
    • 6c Giuglio-Tonolo G, Terme T, Vanelle P. Synlett 2005; 251
    • 6d Juspin T, Laget M, Terme T, Azas N, Vanelle P. Eur. J. Med. Chem. 2010; 45: 840
    • 6e Khoumeri O, Giuglio-Tonolo G, Crozet MD, Terme T, Vanelle P. Tetrahedron 2011; 67: 6173
    • 6f Khoumeri O, Terme T, Vanelle P. Synthesis 2018; 2617
    • 6g Montana M, Terme T, Vanelle P. Lett. Org. Chem. 2010; 7: 453
    • 6h Roche M, Terme T, Vanelle P. Molecules 2013; 18: 1540
    • 7a Amiri-Attou O, Terme T, Vanelle P. Synlett 2005; 3047
    • 7b Khoumeri O, Montana M, Terme T, Vanelle P. Tetrahedron 2008; 64: 11237
    • 7c Khoumeri O, Terme T, Vanelle P. Tetrahedron Lett. 2012; 53: 2410
    • 7d Montana M, Terme T, Vanelle P. Tetrahedron Lett. 2005; 46: 8373
    • 7e Montana M, Terme T, Vanelle P. Tetrahedron Lett. 2006; 47: 6573
    • 7f Amiri-Attou O, Terme T, Vanelle P. Molecules 2005; 10: 545
  • 8 3-Benzyl-2-benzofuran-1(3H)-ones 3ao; General Procedure The appropriate substituted benzylic chloride 2ao (1 mmol, 1 equiv) in anhyd THF (15 mL) was added to methyl 2-formylbenzoate (1a; 328 mg, 2 mmol, 2 equiv) under nitrogen in a two-necked flask. TDAE (200 mg, 1 equiv) was added dropwise, and the solution was cooled to –20 °C, maintained at this temperature for 1 h, and then kept at rt for 3 h. The solution was then extracted with EtOAc (3 × 20 mL) and the extracts were washed with brine (3 × 20 mL), dried (MgSO4), and concentrated. The crude product was purified by chromatography [silica gel, CH2Cl2–PE (1:1)] and recrystallized from EtOH. 3-(4-Nitrobenzyl)-2-benzofuran-1(3H)-ones (3a) White solid; yield: 190.99 mg (71%); mp 169 °C. 1H NMR (250 MHz, DMSO-d 6): δ = 3.24 (dd, J = 14.3, 7.8 Hz, 1 H, CH2), 3.63 (dd, J = 14.3, 4.1 Hz, 1 H, CH2), 5.99 (dd, J = 7.7, 4.1 Hz, 1 H, CH), 7.54 (d, J = 8.7 Hz, 2 H, ArH), 7.59 (t, J = 7.4 Hz, 3 H, ArH), 7.74 (d, J = 7.6 Hz, 1 H, ArH), 8.16 (d, J = 8.6 Hz, 2 H, ArH). 13C NMR (62.5 MHz, DMSO-d 6): δ = 38.9, 80.4, 122.9, 123.2 (2 C), 124.9, 125.4, 129.4, 130.8 (2 C), 134.3, 144.4, 146.4, 149.0, 169.4. HRMS (ESI): m/z [M + H]+ calcd for C15H12NO4: 270.0761; found: 270.0763.
    • 9a Dhanasekaran S, Bisai V, Unhale RA, Suneja A, Singh VK. Org. Lett. 2014; 16: 6068
    • 9b He Y, Cheng C, Chen B, Duan K, Zhuang Y, Yuan B, Zhang M, Zhou Y, Zhou Z, Su YJ, Cao R, Qiu L. Org. Lett. 2014; 16: 6366
  • 10 3-(4-Nitrobenzyl)-2-benzofuran-1(3H)-ones 4bj; General Procedure A two-necked flask equipped with a N2 inlet was charged with a solution of 4-nitrobenzyl chloride (2a; 171 mg, 1 mmol, 1 equiv) and the appropriate methyl 2-formylbenzoate 1bj (2 mmol, 1.5 equiv) in anhyd DMF (15 mL) at –20 °C under nitrogen, and then TDAE (200 mg, 1 equiv) was added dropwise. The solution was maintained at –20 °C for 1 h and then kept at rt for 2 h at –20 °C. The product workup was as described above for products 3a–o. 6-Chloro-3-(4-nitrobenzyl)-2-benzofuran-1(3H)-one (4b) White solid; yield: 139.69 mg (46%); mp 157 °C. 1H NMR (250 MHz, DMSO-d 6): δ = 3.26 (dd, J = 14.3, 7.8 Hz, 1 H, CH2), 3.63 (dd, J = 14.3, 4.2 Hz, 1 H, CH2), 6.00 (dd, J = 7.7, 4.2 Hz, 1 H, CH), 7.53 (d, J = 8.7 Hz, 2 H, ArH), 7.78 (d, J = 8.1 Hz, 1 H, ArH), 7.84 (d, J = 1.6 Hz, 1 H, ArH), 7.87 (dd, J = 8.1, 1.9 Hz, 1 H, ArH), 8.16 (d, J = 8.7 Hz, 2 H, ArH). 13C NMR (62.5 MHz, DMSO-d 6): δ = 39.8, 80.5, 123.2 (2 C), 124.5, 124.9, 127.5, 130.9 (2 C), 134.2, 134.3, 144.2, 146.4, 147.7, 168.1. HRMS (ESI): m/z [M + NH4]+ calcd for C15H14ClN2O4: 321.0637; found: 321.0636.