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ZUSAMMENFASSUNG

Ziel Ein kürzlich eigens entwickeltes künstliches neuronales

Netzwerk (U-Net) zeigte eine gute und mit klinischer radio-

logischer Befundung vergleichbare Erkennungsrate klinisch

signifikanter Prostatakarzinome (sPC). In dieser Arbeit wird

nun die Kongruenz der durch U-Net und mehrere Radiologen

erstellten Läsionsvolumina (der Segmentationen) verglichen.

Materialien und Methoden 165 Patienten mit Verdacht auf

sPC erhielten eine multiparametrische MRT (mpMRT) bei

3 Tesla, gefolgt von gezielter und systematischer MR/TRUS-

Fusionsbiopsie. Fünf Segmentationen pro Untersuchung wur-

den erstellt: Segmentationen klinischer Läsionen, unabhän-

gige und geblindete retrospektive PI-RADS-Befundung durch

3 Radiologen und U-Net. Die läsionsbasierte Übereinstim-

mung für jeden Befunder wurde durch den Dice-Koeffizienten

mit überlappenden Läsionen anderer Befunder bestimmt.

Die Übereinstimmung wurde durch deskriptive Statistik und

lineare gemischte Modelle verglichen.

Ergebnisse Der mittlere Dice-Koeffizient war für Radiologen

mit 0,48–0,52 nur moderat kongruent als Ausdruck der

schwierigen visuellen Aufgabe, die Begrenzung sonst überein-

stimmend detektierter Läsionen zu bestimmen. U-Net-Seg-

mentationen waren signifikant kleiner als manuelle Segmen-

tationen (p < 0,0001) und zeigten einen geringeren mittleren

Dice-Koeffizienten von 0,22, signifikant kleiner als manuelle

Segmentationen (alle p < 0,0001). Diese Unterschiede blieben

nach Adjustierung für die Segmentationsgröße bestehen und

wurden nicht durch das Vorliegen eines sPC oder eine zonale

Lokalisation in der peripheren oder Transitionszone beein-

flusst.

Schlussfolgerung Die Kenntnis der Größenordnung der Über-

einstimmung manueller Segmentationen verschiedener

Radiologen ist wichtig, um den Erwartungswert für Künstliche-

Intelligenz (KI) -Ansätze festzulegen. Eine perfekte Übereinstim-

mung (Dice-Koeffizient von 1) sollte für KI nicht erwartet

werden. Die geringeren Dice-Koeffizienten des U-Nets werden

nur teilweise durch die geringere Segmentationsgröße des

U-Nets erklärt, was durch eine Fokussierung des U-Nets auf den

Urogenital Tract
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Läsionskern und eine geringe Verschiebung des Läsionszentrums

erklärt werden könnte. Obwohl primär die korrekte Detektion

von sPC durch KI wichtig ist, kann der Dice-Koeffizient mit multi-

plen Befundern als sekundäres Qualitätsmaß in zukünftigen Stu-

dien herangezogen werden.

Kernaussagen:
▪ Intermediäre Dice-Koeffizienten der Radiologen reflek-

tieren die Schwierigkeit der übereinstimmenden Festle-

gung der Berandung gemeinsam detektierter Läsionen.

▪ Die beobachteten geringeren Dice-Koeffizienten motivie-

ren die Weiterentwicklung von Deep Learning Systemen

mit dem Ziel der besseren Approximation menschlicher

Perzeption.

▪ Eine vergleichbare Prädiktion des klinisch signifikanten

Prostatakarzinoms erscheint unabhängig von der Über-

einstimmung der Dice-Koeffizienten.

▪ Die Unabhängigkeit des Dice-Koeffizienten vom Vorliegen

eines signifikanten Prostatakarzinoms spricht für die

fehlende Unterscheidbarkeit mancher benigner von

malignen Bildcharakteristika.

▪ Technische Verbesserungen in der Bildregistrierung

zwischen DWI und T2 können in Zukunft möglicherweise

die U-Net Dice-Koeffizienten erhöhen.

ABSTRACT

Purpose A recently developed deep learning model (U-Net)

approximated the clinical performance of radiologists in the

prediction of clinically significant prostate cancer (sPC) from

prostate MRI. Here, we compare the agreement between

lesion segmentations by U-Net with manual lesion segmenta-

tions performed by different radiologists.

Materials and Methods 165 patients with suspicion for sPC

underwent targeted and systematic fusion biopsy following

3 Tesla multiparametric MRI (mpMRI). Five sets of segmenta-

tions were generated retrospectively: segmentations of clinical

lesions, independent segmentations by three radiologists, and

fully automated bi-parametric U-Net segmentations. Per-lesion

agreement was calculated for each rater by averaging Dice

coefficients with all overlapping lesions from other raters.

Agreement was compared using descriptive statistics and

linear mixed models.

Results The mean Dice coefficient for manual segmentations

showed only moderate agreement at 0.48–0.52, reflecting

the difficult visual task of determining the outline of other-

wise jointly detected lesions. U-net segmentations were sig-

nificantly smaller than manual segmentations (p < 0.0001)

and exhibited a lower mean Dice coefficient of 0.22, which

was significantly lower compared to manual segmentations

(all p < 0.0001). These differences remained after correction

for lesion size and were unaffected between sPC and non-sPC

lesions and between peripheral and transition zone lesions.

Conclusion Knowledge of the order of agreement of manual

segmentations of different radiologists is important to set the

expectation value for artificial intelligence (AI) systems in the

task of prostate MRI lesion segmentation. Perfect agreement

(Dice coefficient of one) should not be expected for AI. Lower

Dice coefficients of U-Net compared to manual segmenta-

tions are only partially explained by smaller segmentation

sizes and may result from a focus on the lesion core and a

small relative lesion center shift. Although it is primarily

important that AI detects sPC correctly, the Dice coefficient

for overlapping lesions from multiple raters can be used as a

secondary measure for segmentation quality in future studies.

Key Points:
▪ Intermediate human Dice coefficients reflect the difficulty

of outlining jointly detected lesions.

▪ Lower Dice coefficients of deep learning motivate further

research to approximate human perception.

▪ Comparable predictive performance of deep learning

appears independent of Dice agreement.

▪ Dice agreement independent of significant cancer pres-

ence indicates indistinguishability of some benign imaging

findings.

▪ Improving DWI to T2 registration may improve the

observed U-Net Dice coefficients.

Citation Format
▪ Schelb P, Tavakoli AA, Tubtawee T et al. Comparison of

Prostate MRI Lesion Segmentation Agreement Between

Multiple Radiologists and a Fully Automatic Deep Learning

System. Fortschr Röntgenstr 2021; 193: 559–573

Introduction

Prostate MRI in combination with stereotactic MR-guided biopsies
is becoming an important cornerstone of the diagnostic pathway
in patients with suspicion of clinically significant prostate cancer
(sPC) [1, 2]. As a result of several major clinical trials, pre-biopsy
prostate MRI is increasingly utilized to better guide biopsy needles
to suspicious targets and to potentially avoid biopsies in patients
with unsuspicious prostate MRI [3, 4]. However, biopsy avoidance
is limited by the known underestimation of multifocal lesions on
prostate MRI [5, 6]. With its increased use, the demand for consis-
tent expert-level interpretation of prostate MRI is rising. The Pros-

tate Imaging – Reporting and Data System (PI-RADS) is the
current standard in clinical prostate MRI interpretation and aims
at reducing inter-reader variability and at standardizing interpre-
tation and clinical MR protocols [7, 8]. Novel artificial intelligence
approaches such as convolutional neural networks (CNN) promise
to capture diagnostically decisive information directly from medi-
cal images [9, 10]. In the prostate, systems providing fully auto-
mated prostate assessment and lesion segmentation [11] or
based on slice classification [12] have been developed. Other
applications have utilized CNNs to evaluate predefined regions
on prostate MR images [13]. It is important to ascertain that
such systems have an acceptable true-negative rate in clinical
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screening scenarios. This requires evaluation of clinical perform-
ance in consecutive patients screened for sPC also including
patients that are ultimately not diagnosed with sPC [11], rather
than evaluating pre-selected cohorts such as only patients
with visible MR lesions [12]. Systems that utilize bi-parametric
(T2-weighted and diffusion-weighted) MRI [11] are potentially
able to extract more information than systems focusing only on a
single sequence [12], as the multiparametric approach to prostate
MRI has long been known to benefit from the combination of
high-resolution anatomical and information-rich functional ima-
ging [14]. It is generally expected that increasing amounts of
data for the training of neural networks will improve the quality
and generalizability of these models. Data annotation requires
significant time and resources. High-quality 3 D lesion annota-
tions on bi-parametric sequences [11] will not be possible for
extremely large data sets. As such, in medical deep learning in
general, patient-level [15] or slice-level [16] annotations are being
explored as especially patient-level information is readily available
in hospital information systems and any AI method trained on
such data could be directly applied to the largest possible retro-
spectively available data sets. However, before accepting end-to-
end approaches that skip lesion segmentation and proceed
directly to patient-level assessment [16], it is of utmost impor-
tance to ascertain that these systems in fact base their decisions
on the correct portion of the data. It is possible that prostate clas-
sification systems base their patient assessment on extra-prostat-
ic tissues that correlate to other risk factors such as age instead of
on prostate tissues. Also, it can be argued whether a segmenta-
tion CNN such as the U-Net [10] is required to exactly reproduce
the segmentations of a single radiologist. From a diagnostic
standpoint, it would be sufficient for the system to indicate the
location and presence of a lesion without agreeing fully with the
extent provided by a radiologist. Also, at present, the Dice coeffi-
cient [17], a commonly used spatial overlap index, is expected to
be high for clearly defined structures such as the prostate itself,
but understandably lower for prostate lesions given the known
inter-observer variability in lesion assessment in the difficult task
of detecting suspicious lesions on a background of hyperplastic,
inflammatory, and degenerative changes [18]. We hypothesized
that the inter-rater variability between different radiologists will
be substantially lower than perfect (Dice coefficient of one) and
comparable to that of a previously developed deep learning algo-
rithm for automatic prostate MRI assessment.

The purpose of this study was to directly compare three-di-
mensional lesion segmentations based on blinded retrospective
PI-RADS interpretations of three radiologists with retrospective
segmentations of lesions indicated in clinical reports and with
automated lesion segmentations provided by a previously estab-
lished U-Net.

Materials and Methods

Patient cohort

The examined patient cohort is part of the previously published
cohort which was used to train and evaluate the U-Net architec-

ture used in this study [11]. Inclusion criteria for the study sample
were MRI performed from May 2015 to February 2016; consecu-
tive men with a clinical indication for biopsy based on prostate-
specific antigen (PSA) elevation and clinical examination or parti-
cipation in our active surveillance program; imaging performed
with our main institutional 3.0 Tesla MRI system; MRI-transrectal
US fusion biopsy performed at our institution; detection of a focal
lesion by at least one of the raters and overlap of each detected
lesion with at least one lesion by another rater. The exclusion crite-
ria were history of treatment for prostate cancer (prostatectomy,
radiation therapy, antihormonal therapy, focal therapy); biopsy
within the past 6 months prior to MRI; and incomplete sequences
or severe MRI artifacts. The institutional and governmental ethics
committee approved the study and waived informed consent.

MR imaging

MR images were acquired at 3 Tesla (Magnetom Prisma, Siemens
Healthcare, Erlangen, Germany) using the standard multi-channel
body coil and integrated spine phased-array coil, according to the
European Society of Urogenital Radiology (ESUR) guidelines [19].
As per the institutional protocol, axial, coronal and sagittal
T2-weighted (T2) images, echo-planar imaging (EPI) diffusion-
weighted images (DWI) and dynamic-contrast enhanced (DCE)
images were acquired. Clinical interpretation by board certified
radiologists included PI-RADS assessment for each detected
lesion and a pictogram indicating lesion location [8, 20].

Systematic and targeted MRI/TRUS-fusion biopsies

All men underwent transperineal grid-directed biopsy performed
under general anesthesia with rigid software registration using
the BiopSee system (MEDCOM, Darmstadt, Germany). Targeted
fusion-biopsy (FTB) of MRI-suspicious lesions (inter-quartile range
(IQR) 4–8 cores, median 6 per lesion) was followed by systematic
saturation biopsy (20–29 cores, median 24 cores), as previously
described [1, 21]. This extended targeted and systematic biopsy
approach has been validated against and confirmed to be concor-
dant with RP specimens [21]. A median of 30 biopsies (IQR 24–37)
were taken per patient with the number of biopsies adjusted to
prostate volume [22]. Systematic biopsies were collected from
sextants according to the Ginsburg Study group protocol [22].

Manual and U-Net MR lesion segmentations

Five sets of segmentations were recorded: prospectively called
clinical lesions (CL) were retrospectively segmented by a prostate
MRI researcher (blinded) with 6 months of experience using series
and slice number and descriptions from clinical reports and their
embedded pictograms, under supervision of a board-certified
senior radiologist with 10 years of experience in prostate MRI
(blinded). Here, we utilized the same segmentations also used
for previous training and validation of the U-Net. Three radiolo-
gists performed previously unreported new independent retro-
spective interpretations according to PI-RADS version 2.1 blinded
to pathology results and clinical reports but with access to PSA
values. Radiologists included an expert with 12 years of prostate
MRI experience (blinded, R1), a board-certified radiologist with
3 years of experience (blinded, R2) and a radiology resident with

561Schelb P et al. Comparison of Prostate… Fortschr Röntgenstr 2021; 193: 559–573 | © 2020. Thieme. All rights reserved.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



2 years of experience and research focus in prostate MRI (blinded,
R3). Segmentations were performed separately on diffusion-
weighted (DWI) images (using both apparent diffusion coefficient
(ADC) and b-value = 1500 s/mm2 (B1500) for lesion assessment)
and T2-weighted (T2w) images using the medical imaging toolkit
(MITK, www.mitk.org) [23, 24]. Three-dimensional (3 D) volumes
of interest (VOI) were manually drawn using the MITK polygon
tool by the investigators. Investigators were instructed to review
the entire examination including T2w, DWI and DCE images first
and then perform the segmentations integrating the visual
appearance and the mental image of the appearance on all
sequences for delineation. In addition, probability maps were
provided by U-Net. Briefly, U-Net was previously trained and vali-
dated for prostate and lesion segmentation using a cohort of
250 examinations for training and cross-validation and another
cohort of 62 examinations for independent testing [11] and has
demonstrated comparable performance to clinical PI-RADS inter-
pretation. For 134 of the 165 included examinations that were
part of the original training set, the four U-Nets of the full ensem-
ble of 16 U-Nets that had not been trained with each respective
case were used to calculate average probability maps for each
patient. For the remaining 31 examinations that were part of the
original test set, all 16 U-Net members of the ensemble contribut-
ed to the probability maps. Probability maps were thresholded
at 0.22, corresponding to the threshold mimicking a PI-RADS 3 as-
sessment established during definition and validation of the
U-Net [11]. In the resulting binary images, non-contiguous
regions were separated, and each isolated region considered as a
separate lesion segmentation. In addition, prostate contours were
segmented manually on T2w images. The prostate masks were
then automatically partitioned into sextants according to the
Ginsburg protocol using the mid-sagittal plane and four additional
angulated planes [5, 25].

Histopathology and fused ground truth

Histopathological analyses were performed under supervision of
one dedicated uropathologist (blinded, 17 years of experience)
according to International Society of Urological Pathology stan-
dards. sPC was defined as International Society of Urological
Pathology (ISUP) grade group ≥ 2 [26]. Separate assessment of
the ISUP grade group was provided for each MR targeted lesion
and for each sextant of the Ginsburg biopsy scheme. As it is
known that targeted biopsies can underestimate sPC in MR index
lesions [21], we use a fused ground truth for optimal assessment
of histopathology attributable to any MR segmentation. For this
purpose, each sextant segmentation is assigned its corresponding
systematic core histopathology. Then, the voxel-wise overlap
between each sextant segmentation and each clinical targeted
segmentation is determined and all sextants that overlap are
assigned to the maximum ISUP grade group of either systematic
sextant or targeted lesion histopathology. This way a high-quality
ground truth is established. The utilized extended systematic and
targeted biopsy approach has been previously shown to have
excellent sensitivity (97 %) for the presence of sPC compared to
radical prostatectomy specimens [1].

Statistical analysis

Overlap analysis was based on T2w segmentations. We used only
lesions for the analysis for which at least one of the other raters
provided an overlapping segmentation. Some raters provided
segmentations for probably benign lesions such as BPH nodules,
which were excluded from the analysis. In this way, we exclude
the detection task from the assessment and focus only on the a
posteriori task of outlining the lesion boundary once at least two
raters have determined that a lesion should be segmented at a
specific location. Descriptive statistics were used to summarize
the demographic and clinical characteristics of the patient
cohort and the distribution of sPC into prostate zones and ISUP
grade group. A logistic mixed model with random patient effects
was used to test for difference in sPC probability between MR
lesions in the PZ and TZ. The mutual voxel overlap of each lesion
segmentation with each other lesion segmentation per examina-
tion was determined. Dice coefficient [17] was calculated as:

With A and B indicating the cardinality (the number of voxels)
in segmentations A and B, respectively, and A ∩ B indicating the
set of voxels that overlap between segmentations A and B. We de-
termined the average Dice coefficient across lesions for each pair
of readers as a measure of pairwise inter-rater agreement. To
compare each reader to all other readers, each lesion of that rater
was regarded as a reference lesion and the Dice coefficients of all
other readers’ lesions overlapping with the reference lesion were
averaged. The result is a metric that represents the congruence of
lesion outlines between each reference rater and all other raters
that decided to segment a lesion at the same location. To study
the influence of lesion size mismatch, we calculated the lesion
size ratio as the ratio of the size of the larger to the smaller lesion.
Linear mixed models with random patient and lesion effects were
constructed for pairwise comparison of average reader Dice coef-
ficients. All pairwise comparisons were performed using Tukey’s
methods for multiplicity adjustment. In addition, models correc-
ted for log-transformed voxel ratio were calculated. Analyses
were performed separately for all lesions, for lesions containing
no sPC, and for those containing sPC to examine whether readers
agree more in sPC-positive lesions. The results were plotted as
jittered dot plots superimposed on box plots. Lesion size distribu-
tion was plotted as histograms. A correlation between voxel ratio
and Dice coefficient was plotted and smoothed using local regres-
sion. Per-lesion deviation of lesion size from the mean of all raters
was depicted as box plots. Statistical analyses were performed
using R version 3.6 (R Foundation for Statistical Computing,
Vienna, Austria, using packages emmeans and lme4) [27].
Reporting followed Standards of Reporting of Diagnostic Accu-
racy [28].

Dice =
2|A ∩ B|
|A| + |B|
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Results

General characteristics and descriptive statistics

From 425men presenting at our institutions in the inclusion period,
165 men (median age: 64 years; interquartile range: 58–71 years)
met the inclusion and exclusion criteria (▶ Fig. 1). Of the 165 pa-
tients included in the study, 82 (50%) were biopsy naïve, 50 (30%)
had received prior negative biopsies and 33 (20%) were enrolled in
active surveillance at the time of the MR exam. Baseline epidemio-
logical and clinical characteristics including pathological findings,

and clinical assessment are given in ▶ Table 1. ▶ Table 2 gives a de-
tailed overview of all overlapping lesions, MR assessments per
lesion, number of MR lesions per patient, and number of overlap-
ping lesions with other raters for each rater individually. For all
raters including CNN, complete agreement that a lesion was pres-
ent at a specific location occurred most frequently (41–44 % of
lesions) compared to only 3 additional raters agreeing which was
the second most common occurrence for human raters (25–30%
of lesions), while for CNN it was agreement with one additional
rater (30% of lesions).

▶ Fig. 1 Inclusion of patients in the study.

▶ Abb.1 Einschluss von Patienten in die Studie.
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CNN has lower lesion boundary agreement compared
to human raters

Box plots of average per-lesion Dice coefficients between each
reference reader and all other readers are given in ▶ Fig. 2. Avera-
ges of lesion-based Dice coefficients for all pairwise rater compar-
isons are given in ▶ Table 3, demonstrating that lesion boundary
agreement according to Dice coefficients was lower for CNN com-
pared to human raters. Linear mixed model analyses with random
patient and lesion effects demonstrated significant differences in
Dice coefficients between CNN and all human raters (p < 0.0001
for all comparisons) (▶ Table 4). Lesion-based mean and standard

deviation of each reference rater to all other raters within the set
of all lesions is given in ▶ Table 4. The mean Dice coefficient with
all other raters was 0.22 for CNN compared to 0.48–0.52 for the
other readers.

U-Net segments smaller lesions compared to human
raters

▶ Fig. 3 depicts histograms of lesion sizes in voxels for each reader,
with PI-RADS categories and zonal distribution being indicated sep-
arately. CNN segments the largest number of small lesions up to
1000 voxels (N = 107 compared to 32, 28, 57 and 46 for prospec-
tive, and readers 1–3, respectively), while it segments fewer lesions
of larger size compared to the human raters. ▶ Fig. 4A demon-
strates the percent deviation of segmentation size from the per-
lesion rater mean. CNN segmentations were on average 21% smal-
ler than the mean of all raters and significantly smaller in all pair-
wise comparisons (all p < = 0.0001). In addition, some of the large
multi-zonal lesions are broken into smaller parts and thus appear
both in the group of the smallest and largest lesions for CNN, while
– as expected – these lesions are all segmented into the largest
lesion group by all human readers.

Lesion boundary agreement depends on
segmentation size

▶ Fig. 4B demonstrates the dependence of Dice coefficients on
the lesion size ratio. Lesion size mismatch is an important factor
contributing to low Dice coefficients, showing e. g. for CNN that
at comparable lesion sizes Dice coefficients approximate 0.5,
while they fall to about one quarter of that as the size mismatch
reaches 10:1.

CNN agreement remains reduced after correction for
segmentation size

Adjusting linear mixed model analyses with random patient and
lesion effects for segmentation size did not remove significant dif-
ferences in Dice coefficients between CNN and all human raters
(p < 0.0001) (▶ Table 4). Thus, the difference in segmentation
size only partially explains the overall lower Dice coefficient
of CNN. This is supported by segmentations of Reader 1 being an
average of 18% larger than segmentations of all other raters and
significantly larger than Reader 2 (p < 0.0001) and Reader 3
(p < 0.001), while there is an absence of a significant overlap
difference for Reader 1 (▶ Fig. 4A, ▶ Table 4). Most of the size
difference for Reader 1 is explained by segmentation of a smaller
number of small PI-RADS 3 lesions (< 1000 voxels) and a larger
number of PI-RADS 4 lesions between 1000 and 2000 voxels in
size (▶ Fig. 3).

Agreement in sPC lesions

Additional analysis of the subgroups of sPC and non-sPC lesions is
depicted in ▶ Fig. 2 for all lesions and given in ▶ Table 3, 4. Dice
coefficients with other readers were significantly higher
(p < 0.001, ▶ Table 4) for CNN in lesions with sPC compared to
non-sPC lesions, but not for human readers. However, this signifi-
cance was removed (p = 0.3) after adjusting for voxel ratio.

▶ Table 1 Demographic and clinical characteristics of 165 included
men.

▶ Tab. 1 Demografische und klinische Merkmale der 165 in die
Studie eingeschlossenen Patienten.

cohort n = 165

age (years)

▪ median (IQR) 64 (58–71)

sPC found in MRI lesion (n (%)) 436/868 (50%)

no sPC found in MRI lesion 432/868 (50%)

lesions in the PZ 632/868 (75%)

lesions in the TZ 220/868 (25%)

multi-zonal lesions 16/868 (2%)

sPC in PZ lesions 317/639 (50%)‡

sPC in TZ lesions 109/217 (50%)‡

sPC in multi-zonal lesions 10/12 (83%)

per-patient maximum Gleason Score/ISUP grade
group (n (%))

▪ no PC 59 (36%)

▪ 6 (3 + 3)/GG I 28 (17 %)

▪ 7a (3 + 4)/GG II 52 (32 %)

▪ 7b (4 + 3)/GG III 11 (7 %)

▪ 8 (4 + 4)/GG IV 4 (2 %)

▪ 9a (4 + 5)/GG V 7 (4 %)

▪ 9b (5 + 4)/GG V 4 (2 %)

▪ 10 (5 + 5)/GG V 0 (0 %)

PSA (ng/ml) median (IQR) 7.2 (5.2–10.4)

biopsy distribution per patient (n (%))

▪ biopsy-naïve 82 (50 %)

▪ previously biopsied 50 (30%)

▪ active surveillance 33 (20%)

IQR = interquartile range; PSA = prostate specific antigen; MRI =mag-
netic resonance imaging; sPC = clinically significant prostate cancer;
PZ = peripheral zone; TZ = transition zone; GG= ISUP grade group.
‡ difference in logistic mixed model not significant (p = 0.16) in sPC and
non-sPC containing lesions between PZ and TZ.
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▶ Fig. 5 shows representative examples of lesion segmenta-
tions with a higher Dice coefficient of 0.71–0.77 (A) and low Dice
coefficients of 0.08–0.16 (B) between CNN and other segmenta-
tions.

Influence of zonal lesion location

There was no statistical difference in the rate of sPC in reader-
detected lesions between the PZ and the TZ (p = 0.17). Box plots
of average per-lesion Dice coefficients between each reference
reader and all other readers are depicted in ▶ Fig. 6 stratified by
the peripheral zone (PZ) and the transition zone (TZ). Additional
analysis separated by PZ and TZ is given in ▶ Table 3, 4. When
analyzing average agreement between readers stratified by zonal
location, there was a slight but non-significant lower agreement
in TZ lesions overall (average Dice coefficient for TZ lesions lower
by 0.04, p = 0.09). Accordingly, for the readers individually – in-

cluding CNN – there was no significant difference between the
mean Dice coefficient of PZ and TZ lesions (all p > 0.067,
▶ Table 4). The reported differences in average agreement
between CNN and other readers were independent of the zonal
location, i. e. there was no heterogeneity in difference between
readers with respect to zonal locations (interaction p = 0.9).
Accordingly, pairwise comparisons of the average Dice coefficient
between CNN and other readers remained significant in separate
analyses of PZ and TZ lesions (all p < 0.0001), indicating signifi-
cantly lower average agreement of CNN for both zonal locations
at a similar magnitude compared to zone-independent analysis.
Lesions were larger in the TZ (mean 6524, IQR 5999 voxels) com-
pared to PZ (mean 3687, IQR 2695 voxels; p < 0.0001) for all raters
except for CNN (TZ: mean 2272, IQR 2019 voxels; PZ: mean 2499,
IQR 2464 voxels; p = 0.34). The bottom part of ▶ Fig. 3 shows that

▶ Table 2 Overlapping lesions reported by different raters.

▶ Tab. 2 Von verschiedenen Befundern detektierte überlappende Läsionen.

cohort CNN clinical reader 1 reader 2 reader 3

number of lesions [n = 868 (100%)]
per reader (n (%))

171 (20 %) 179 (21%) 170 (20%) 179 (21%) 169 (20%)

MRI assessment (n (%))

▪ total 171 (100%) 179 (100%) 170 (100%) 179 (100%) 169 (100%)

▪ PI-RADS 3 18 (11%) 47 (26 %) 31 (18%) 56 (31%) 40 (24 %)

▪ PI-RADS 4 77 (45%) 88 (49 %) 97 (57%) 83 (46%) 76 (45 %)

▪ PI-RADS 5 76 (44%) 44 (25 %) 42 (25%) 40 (22%) 53 (31 %)

patients without MRI lesions 58/165 (35%) 26/165 (16%) 36/165 (22%) 26/165 (16%) 37/165 (22%)

patients with MRI lesions 107 (100%) 139 (100%) 129 (100%) 139 (100%) 128 (100%)

number of MRI

lesions per patient (n (%))

▪ 1 lesion 70 (65%) 102 (73%) 95 (74%) 104 (75%) 95 (74 %)

▪ 2 lesions 24 (22 %) 34 (25 %) 28 (22%) 30 (22%) 26 (20 %)

▪ 3 lesions 6 (6 %) 3 (2 %) 5 (4 %) 5 (4%) 6 (5 %)

▪ 4 lesions 3 (3 %) 0 (0 %) 1 (1 %) 0 (0%) 1 (1 %)

▪ 5 or 6 lesions 4 (4 %) 0 (0 %) 0 (0 %) 0 (0%) 0 (0 %)

zonal distribution of lesions

▪ peripheral zone (PZ) 3 (2 %) 2 (1 %) 2 (1 %) 1 (1%) 4 (2 %)

▪ transition zone (TZ) 107 (63%) 131 (73%) 133 (78%) 143 (80%) 125 (74%)

▪ large multi-zonal lesion 61 (36%) 46 (26 %) 35 (21%) 35 (20%) 40 (24 %)

overlap of lesions with other raters
(n (%))

▪ 1 rater 51 (30 %) 30 (17 %) 31 (18%) 37 (21%) 22 (13 %)

▪ 2 raters 26 (15 %) 22 (12 %) 19 (11%) 24 (13%) 27 (16 %)

▪ 3 raters 22 (13%) 52 (29 %) 46 (27%) 45 (25%) 50 (30 %)

▪ 4 raters 72 (42 %) 75 (42 %) 74 (44%) 73 (41%) 70 (41 %)

PI-RADS = Prostate Imaging Reporting and Data System; PZ = peripheral zone; TZ = transition zone.
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▶ Fig. 2 Boxplots of per-lesion average Dice coefficient calculated between each reference reader and all remaining readers. The bold black line at
the notch indicates the median, the ends of the box the 25th and 75th percentiles and the whiskers minimum and maximum. Black dots indicate
individual data points. Red circles indicate the mean. Vertical red line segments indicate the standard error of the mean (SEM). A Boxplots depicting
lesions without sPC B Boxplots depicting lesions with sPC. C Boxplots depicting data for all overlapping lesions.

▶ Abb.2 Box-Plots des durchschnittlichen Dice-Koeffizienten pro Läsion, berechnet zwischen jedem Referenzbefunder und allen verbleibenden
Befundern. Die fette schwarze Linie an der Kerbe zeigt den Median an, die Enden der Box das 25. und 75. Perzentil und die Antennen die Minimal-
und Maximalwerte. Gefüllte schwarze Kreise kennzeichnen einzelne Datenpunkte. Rote Kreise entsprechen dem Mittelwert. Vertikale rote Linien-
segmente geben den Standardfehler des Mittelwerts (SEM) an. A Box-Plots mit Läsionen ohne sPC. B Box-Plots mit Läsionen mit sPC. C Box-Plots
mit Daten für alle überlappenden Läsionen.

▶ Table 3 Average of individual mutual Dice coefficients across lesions by reference reader, for all lesions and stratified by sPC/non-sPC and by per-
ipheral zone (PZ) and transition zone (TZ).

▶ Tab. 3 Über alle Läsionen gemittelte Dice-Koeffizienten, stratifiziert nach Referenzbefunder für alle Läsionen sowie separat für sPC-positive und
-negative Läsionen.

reference reader comparison non-sPC lesions sPC lesions all lesions PZ lesions TZ lesions

average Dice
coefficient

average Dice
coefficient

average Dice
coefficient

average Dice
coefficient

average Dice
coefficient

CNN prospective 0.23 0.29 0.26 0.29 0.21

CNN reader 1 0.21 0.28 0.25 0.25 0.25

CNN reader 2 0.20 0.31 0.27 0.27 0.27

CNN reader 3 0.25 0.30 0.28 0.32 0.23

prospective reader 1 0.58 0.54 0.56 0.57 0.52

prospective reader 2 0.55 0.55 0.55 0.54 0.58

prospective reader 3 0.61 0.61 0.61 0.62 0.57

reader 1 reader 2 0.53 0.51 0.51 0.54 0.44

reader 1 reader 3 0.54 0.56 0.56 0.55 0.55

reader 2 reader 3 0.56 0.56 0.56 0.56 0.54
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the larger number of small CNN lesions does not favor the PZ or
TZ specifically but affects both zones similarly.

Discussion

In this study we compare the agreement in lesion segmentation
on prostate MRI between 3 radiologists, retrospectively per-
formed segmentations of clinically reported lesions and U-Net
segmentations. We find that the mean Dice coefficients between
manual segmentations are 0.48–0.52, establishing that radiolo-
gists do not completely agree about the boundaries of lesions
that at least two readers consider reportable. This is in accordance
with the known difficult task of visual prostate MRI interpretation
which is also a source of inter-rater variability [18]. We find that a
previously established automatic deep learning system (U-Net)
which has achieved similar performance to clinical PI-RADS

assessment [11] produces segmentations that are systematically
smaller than segmentations of human raters. This smaller size
bias of the CNN is a major contributor to lower segmentation
agreement with Dice coefficients of 0.25–0.28 compared to
human raters. U-Net thus appears to have a tendency to focus
on the lesion core while radiologists use additional clues to also
capture the lesion periphery. It is important to note that U-Net
was trained using two-dimensional cross-entropy loss and not a
Dice loss function. As such, training attempted to reproduce as
much of the lesion area, but had to balance false-positive disco-
veries outside of the known tumor foci. As such, the training
resulted in a delineation of the highest probability voxels within a
lesion. In addition, the calibration of the U-Net which was
performed on the validation set during model development to
approximate the clinical performance at PI-RADS≥ 3 and ≥ 4 as
closely as possible led to the selection of probability thresholds

▶ Table 4 All pairwise comparisons of average Dice coefficient between reference readers, linear mixed model with random patient and lesion
effect. Mean across lesions of mean Dice coefficients per lesion by reference reader. Test on the difference in average Dice coefficient between
lesions with sPC and without sPC based on linear mixed model with random patient effect.

▶ Tab. 4 Alle paarweisen Vergleiche des durchschnittlichen Dice-Koeffizienten zwischen Referenzbefundern, lineares gemischtes Modell mit
Patienten und Läsionen als Random Effects. Über alle Läsionen und Vergleichsbefunder gemittelte Dice-Koeffizienten. Statistischer Test des Unter-
schieds des durchschnittlichen Dice-Koeffizienten zwischen Läsionen mit sPC und ohne sPC basierend auf einem linearen gemischten Random-
Effects-Modell.

reference
reader

comparison non-sPC lesions sPC lesions all lesions

p-value p-value adjusted
for voxel ratio

p-value p-value adjusted
for voxel ratio

p-value p-value
adjusted for
voxel ratio

CNN prospective < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

CNN reader 1 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

CNN reader 2 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

CNN reader 3 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

prospective reader 1 0.2707 0.7120 0.1118 0.1901 0.0114 0.0779

prospective reader 2 0.1275 0.1080 0.0624 0.1177 0.0032 0.0069

prospective reader 3 0.9703 0.9789 0.9904 0.9949 0.9470 0.9679

reader 1 reader 2 0.9992 0.8399 0.9990 0.9992 0.9982 0.9464

reader 1 reader 3 0.6385 0.9547 0.3110 0.4053 0.0986 0.3122

reader 2 reader 3 0.4691 0.3909 0.1986 0.2805 0.0456 0.0616

reader mean dice coef-
ficient non-sPC
lesions

mean dice coeffi-
cient sPC lesions

mean dice coeffi-
cient all lesions

mean dice coeffi-
cient PZ lesions

mean dice
coefficient
TZ lesions

p-values
(comparison
PZ to TZ)

CNN 0.17 (± 0.18) 0.26 (± 0.21) 0.22 (± 0.20) 0.23 (± 0.20) 0.18 (± 0.20) 0.179

prospective 0.51 (± 0.21) 0.51 (± 0.18) 0.51 (± 0.19) 0.52 (± 0.18) 0.46 (± 0.24) 0.067

reader 1 0.47 (± 0.19) 0.49 (± 0.16) 0.48 (± 0.17) 0.48 (± 0.17) 0.47 (± 0.20) 0.712

reader 2 0.48 (± 0.21) 0.48 (± 0.18) 0.48 (± 0.20) 0.47 (± 0.20) 0.50 (± 0.20) 0.277

reader 3 0.51 (± 0.20) 0.52 (± 0.15) 0.52 (± 0.18) 0.53 (± 0.16) 0.49 (± 0.21) 0.198

test for difference in Dice coefficient between
sPC and non-sPC

CNN prospective reader 1 reader 2 reader 3

p-value 0.001 0.828 0.493 0.629 0.576

p-value adjusted for voxel ratio 0.300 0.506 0.333 0.481 0.749
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▶ Fig. 3 Histograms of lesion segmentation size for each reader. Bin size is 1000 voxels. The last bin (14 000–15 000 voxels) additionally contains all
segmentations larger than 15 000 voxels. Top) Colors indicate PI-RADS category of lesions (see legend). Bottom) Colors indicate prostate zone. The
histogram for U-Net (CNN) demonstrates a larger number of smallest lesions (< 1000 voxels) and less frequent occurrence of larger lesions com-
pared to histograms of R1-R3 and CL (prospective). Human raters are more comparable to each other. CNN segments both lesions in the peripheral
and transition zone smaller than human raters.

▶ Abb.3 Histogramme der Läsionssegmentierungsgröße für jeden Befunder. Die Bin-Größe beträgt 1000 Voxel. Das letzte Bin (14 000–15 000
Voxel) enthält zusätzlich alle Segmentierungen, die größer als 15 000 Voxel sind. Oben: Die Farben entsprechen der PI-RADS-Kategorie der Läsio-
nen (siehe Legende). Unten: Die Farben entsprechen der zonalen Lokalisation der Läsionen (siehe Legende). Das Histogramm für U-Net (CNN) zeigt
eine größere Anzahl kleinster Läsionen (< 1000 Voxel) und ein weniger häufiges Auftreten größerer Läsionen im Vergleich zu Histogrammen von
R1-R3 und CL (prospektiv). Menschliche Bewerter sind besser miteinander vergleichbar. CNN segmentiert sowohl Läsionen in der peripheren als
auch der Transitionszone kleiner als menschliche Befunder.
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0.22 for emulation of PI-RADS≥ 3 decisions, and 0.33 for emula-
tion of PI-RADS≥ 4 decisions. Most of the lesion area not currently
included in CNN segmentations would become segmented if the
threshold would be lowered below the 0.22 setting. However, this
would increase the discovery of false-positive lesions elsewhere in
the prostate and affect performance unless a local neighborhood
region growing criterion were used to expand the lesion territory.
Another likely important factor is the co-registration of DWI ima-
ges to T2 used in U-Net training and predictions. U-Net reports
those voxels that are suspicious on bi-parametric (T2w and DWI)
co-registered data. If co-registration is not perfect, voxels of
imperfect overlap will be excluded from the segmentation as
these incorrectly co-register to a normal-appearing T2 signal
with suspicious ADC findings or vice versa. Co-registration in pros-
tate MRI is a known difficult challenge [29], as DWI and T2w ima-
ges are often affected by significant misregistration due to DWI
distortion by susceptibility interfaces to rectal air and bowel
motion/varying rectal distension during the examination. The
published U-Net used rigid followed by affine registration, while
newer developments in our group are using optimized registra-

tion algorithms, e. g. b-spline registration and non-linear registra-
tion. It is possible that remaining misregistration accounts for
some of the observed Dice coefficient reduction in this study.
While lesion size is identified as an important factor resulting in
reduced Dice coefficients for U-Net, it does not explain all of the
differences, e. g. lesion size segmentation differences existed also
within human readers. Reader 1 segmented on average larger le-
sions. However, there was no significantly reduced agreement be-
tween the human readers. One possible explanation is that CNN
lesions are shifted relative to the common lesion core of human
raters while human raters more consistently agree on the lesion
center. Therefore, on average, the lesions of Reader 1 encompass
the smaller lesions from the other human raters more concentri-
cally than the CNN lesions are encompassed by all other lesions.

Dai et al. have previously evaluated a region proposal CNN
(Mask R-CNN) to determine the Dice coefficient between radiolo-
gists and automated segmentation. They used a total of 120 pa-
tients (78 public, 42 private) with training of the lesion detection
using 45 public patients and 21 private patients. These numbers
are smaller compared to the 250 patients used for training of the

▶ Fig. 4 A Normalized difference (average lesion size for each individual lesion location subtracted from all individual lesion measurements and
divided by the average lesion size) shown as black dots for all lesions. Data are summarized as boxplots (see legend of Fig. 2 for further detail on
boxplots). B Semi-logarithmic plot of the ratio of the number of voxels of the larger and smaller segmentation of each pair of overlapping lesions,
given for each reference rater separately. Abscissa: logarithmic voxel ratio. Ordinate: Dice coefficient. Local regression lines in red indicate the trend
of the data, showing that Dice coefficients decrease as lesion sizes are increasingly divergent. For lesions of comparable size (ratio close to one), the
fit indicates Dice coefficients of nearly 0.5 for CNN and up to 0.7 for the other raters.

▶ Abb.4 A Normalisierte Differenz (durchschnittliche Läsionsgröße für jeden einzelnen Läsionsort, subtrahiert von allen einzelnen Läsionsmes-
sungen und geteilt durch die durchschnittliche Läsionsgröße), dargestellt als schwarze Punkte für alle Läsionen. Die Daten werden als Boxp-Plots
zusammengefasst (weitere Einzelheiten zu Box-Plots finden Sie in der Legende von Abb. 2). B Semi-logarithmisches Diagramm des Verhältnisses
der Anzahl der Voxel der größeren und kleineren Segmentierungen jedes Paares überlappender Läsionen, separat angegeben für jeden Referenz-
befunder. Abszisse: logarithmisches Voxelverhältnis. Ordinate: Dice-Koeffizient. Lokale Regressionslinien in Rot geben den Trend der Daten an und
zeigen, dass die Dice-Koeffizienten abnehmen, wenn die Läsionsgrößen zunehmend divergieren. Für Läsionen vergleichbarer Größe (Verhältnis
nahe 1) ergeben sich Dice-Koeffizienten von nahezu 0,5 für CNN und bis zu 0,7 für die anderen Befunder.
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currently evaluated CNN. Also, the U-Net approach used here
represents a different paradigm than the region proposal
approach in that it directly determines the segmentation from
the data. It is not possible to determine which of the two (Mask
R-CNN and U-Net) is better by comparison to the Dai et al. study.
This would require comparison of both algorithms in the same
cohort. Dice coefficients reported by Dai et al. in the private test-
ing set were 0.38–0.46 compared to 0.28–0.31 in sPC lesions in
this study. In our review, the public PROSTATEx-2 dataset has
larger and clearer lesions than the consecutive clinical cohorts
presenting in the clinical routine to our institution, thus explaining
the higher Dice coefficients compared to our study. Dai et al. did
not specify whether consecutive clinical patients were included,
while it is important to reflect the clinical routine as closely as
possible to arrive at clinically meaningful comparisons. In the
present study it is an advantage that the CNN operated on the
same consecutive patients that were seen by radiologists in the
clinical routine. Dice coefficients have limited direct comparability
between studies for several reasons. The distribution of lesions

may differ markedly, e. g. patients may present with more
advanced tumors to one institution and with more subtle imaging
findings to another institution. Dai et al. did not report average
PSA levels of the included patients. In fact, they provided almost
no demographic or clinical information, which would partly have
allowed better estimation of cohort differences. Also, the para-
digm of lesion delineation may affect the Dice coefficient. In Dai
et al. three radiologists delineated lesions using the histopatholo-
gical results and clinical reports. As far as can be told, the three
radiologists shared the work of delineation as no comparison of
radiologist performance is given. The depth of comparison of
lesion delineation in the current study is more profound, as three
radiologists independently delineated lesions while performing
independent re-reads of the clinical cases, thus reflecting
the true clinical decision process, unbiased by knowledge of the
biopsy results and previous reports. In addition, the prospective
clinical performance was compared. In the current study the
variability of such independent radiologist assessment can be
directly compared to CNN performance, a novel insight which is

▶ Fig. 5 Examples of the spectrum of overlap of multi-reader segmentations. ROIs are shown on one representative axial T2-weighted image of the
prostate. CNN segmentation is shown as a yellow area, with segmentations of readers shown as outlines for clinical assessment (green), reader 1
(red), reader 2 (light blue) and reader 3 (orange) A 55-year-old patient with PSA of 12.0 ng/mL, no prior biopsy. Dice coefficient with CNN seg-
mentation was 0.77 (clinical), 0.69 (reader 1), 0.69 (reader 2) and 0.71 (reader 3). B 65-year-old patient with PSA of 5.1 ng/mL, no prior biopsy. Dice
coefficient with CNN segmentation was 0.08 (clinical), 0.11 (reader 1), 0.13 (reader 2) and 0.16 (reader 3). Targeted biopsy from both locations
showed Gleason Grade Group 2 sPC. CNN segmentations were systematically smaller than segmentations performed by radiologists, with
B representing one of the cases with the most pronounced difference.

▶ Abb.5 Beispiele für das Spektrum der Überlappung von Segmentierungen der verschiedenen Befunder. Die ROIs sind auf einem repräsentativen
axialen T2-gewichteten Bild der Prostata dargestellt. Die CNN-Segmentierung wird als gelbe Fläche dargestellt, wobei die Segmentierungen der
weiteren Befunder als Umrisse dargestellt sind: klinische Beurteilung (grün), Befunder 1 (rot), Befunder 2 (hellblau) und Befunder 3 (orange).
A 55 Jahre alter Patient mit PSA 12,0 ng/ml, keine vorherige Biopsie. Der Dice-Koeffizient mit CNN-Segmentierung betrug 0,77 (klinisch), 0,69
(Leser 1), 0,69 (Leser 2) und 0,71 (Leser 3). B 65-jähriger Patient mit einem PSA von 5,1 ng/ml, keine vorherige Biopsie. Der Dice-Koeffizient mit der
CNN-Segmentierung betrug 0,08 (klinisch), 0,11 (Befunder 1), 0,13 (Befunder 2) und 0,16 (Befunder 3). Gezielte Biopsien beider Läsionen ergaben
Gleason Grade Group 2 sPC. CNN-Segmentierungen waren insgesamt systematisch kleiner als die Segmentierungen der Radiologen, wobei B ein
besonders deutliches Beispiel darstellt.
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of importance to correctly put CNN performance into context.
Importantly, the diagnostic performance of the CNN evaluated in
this study in terms of sPC detection has been previously shown
[11]. The same diagnostic performance in terms of sPC detection
was achieved even if the CNN segments lesions systematically
smaller than the radiologists. As such, the CNN may focus more
on the lesion core, while the radiologists focus more on outlining
the entire lesion. It is important to note that while differences in
voxel-wise agreement between radiologists and CNN exist, the
resulting diagnostic performance is of primary importance such
that the clinical value of a CNN cannot be determined only from
examining metrics of voxel-wise agreement such as the Dice
coefficient. While Dai et al. did not provide a zone-specific
analysis, we also performed separate analyses in the TZ and PZ

and found that the differences in Dice coefficients between CNN
and the other readers are present at the same magnitude in both
zones. In addition, the agreement with the other readers did not
differ significantly in the PZ or TZ for any of the readers. While
independence of quantitative mADC assessment [30] from zonal
lesion location has been reported previously, and the diffusion
component of the mpMRI examination has become more impor-
tant in the most recent PI-RADS version 2.1 update [31], our find-
ings provide further evidence that prostate zones do not govern
differences in the lesion detection task neither for radiologists
nor for the examined CNN. We note that sizes of lesions detected
by radiologists were larger in the TZ compared to the PZ, likely
reflecting the more difficult task of identifying small lesions in
the often more heterogeneous TZ. This difference was absent for

▶ Fig. 6 Boxplots of per-lesion average Dice coefficient calculated between each reference reader and all remaining readers, stratified by periph-
eral and transition zone. The bold black line at the notch indicates the median, the ends of the box the 25th and 75th percentiles and the whiskers
minimum and maximum. Black dots indicate individual data points. Red circles indicate the mean. Vertical red line segments indicate the standard
error of the mean (SEM). A Boxplots depicting lesions without sPC in the peripheral zone B Boxplots depicting lesions with sPC in the peripheral
zone. C Boxplots depicting lesions without sPC in the transition zone D Boxplots depicting lesions with sPC in the transition zone.

▶ Abb.6 Box-Plots des durchschnittlichen Dice-Koeffizienten pro Läsion, berechnet zwischen jedem Referenzbefunder und allen verbleibenden
Befundern, stratifiziert nach Prostatazone. Die fette schwarze Linie an der Kerbe zeigt den Median an, die Enden der Box das 25. und 75. Perzentil
und die Antennen die Minimal- und Maximalwerte. Gefüllte schwarze Kreise kennzeichnen einzelne Datenpunkte. Rote Kreise entsprechen dem
Mittelwert. Vertikale rote Liniensegmente geben den Standardfehler des Mittelwerts (SEM) an. A Box-Plots mit Läsionen ohne sPC in der peripheren
Zone. B Box-Plots mit Läsionen mit sPC in der peripheren Zone. C Box-Plots mit Läsionen ohne sPC in der Transitionszone. D Box-Plots mit Läsionen
mit sPC in der Transitionszone.
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CNN, indicating that CNN training did not result in the data-driven
formation of a zone-specific lesion size filter representation in the
network.

Lesion overlap Dice coefficient to multi-rater data as utilized in
this study is surely an expensive measure as performance of
segmentations by multiple radiologists is prohibitive in any large
scale situation, where it is difficult enough to collect a single
expert’s segmentations. As such, it is of high interest to find that
radiologists evaluated by the same metric as CNN do not perform
much better than 0.5. This number can be regarded as a new
benchmark for inter-rater agreement for the task of lesion bound-
ary definition that can be used to evaluate if the lesion definitions
agree with manual segmentations in the same way as different
manual segmentations agree with each other. It is important to
note that clinical usefulness is of primary concern when develop-
ing an AI system. In end-to-end AI systems [16], all that counts is
that the entire processing from raw data to the clinically essential
diagnostic information is included in a single trainable algorithm.
Segmentation in itself is not mandatory to arrive at a prediction of
the risk of a patient to harbor sPC. However, directly comparing
segmentations as in the current study is crucial for AI explainabil-
ity [32], since, especially for medical applications, it is important
to assert that AI systems follow generally accepted patterns in
medical decision making. As one finds in this study, differences
may exist and require evaluation of their potential effect on the
diagnostic utility of the method.

An important finding is that the lesion agreement according to
Dice coefficient showed no significant changes when focusing
only on sPC-positive lesions compared to sPC-negative lesions for
the human raters, while U-Net demonstrated higher Dice coeffi-
cients in sPC-positive lesions before correction for lesion size mis-
match, but not afterwards. For human raters this indicates that
benign findings on prostate MRI can exactly mimic the appear-
ance of cancer such that they are visually indistinguishable. For
U-Net it is possible that smaller lesion segmentations in non-sPC
situations reflect a stricter focus of U-Net on the lesion core which
may in fact exhibit a size difference between sPC and non-sPC le-
sions, while human raters include more of the full lesion which
may exhibit a similar size on average.

Our study has several limitations. The histopathological stand-
ard of reference was MR-TRUS fusion biopsy and not radical prosta-
tectomy (RP). However, the sensitivity of the extended systematic
and targeted biopsy performed here has previously been shown to
detect 97% of sPC compared to RP specimen [12]. In addition, only
a cohort based on biopsies can encompass all men that are impor-
tant to consider in a screening setting of men with suspicion for
sPC. Any RP cohort will exclude many screening-relevant men, as
it only focuses on men with biopsy-proven surgery-eligible sPC.
The study design was retrospective. However, all eligible patients
undergoing MRI and fusion biopsy in the inclusion interval were
analyzed.

Conclusion

We find that human experts with various levels of training do not
perfectly agree with respect to their delineation of lesions that

they otherwise jointly detect, reflecting the difficulty of the visual
task of lesion detection in the prostate. The examined CNN had a
lower Dice coefficient compared to human raters than human
raters compared to one another. Importantly, the performance
of CNN in the prediction of sPC is not affected by this finding and
has been validated to be comparable to clinical PI-RADS interpre-
tation before. The remaining difference is not a primary training
criterion but could be incorporated in future CNN training to
assure more agreement of intermediate results such as segmen-
tations that contribute to final diagnostic assessment. It may also
be the result of U-Net focusing more on the lesion core and some
contribution from remaining misregistration betweenT2 and DWI
images, which would be large enough to affect the Dice coeffi-
cient but small enough not to impede successful lesion detection.
Our study provides an example of comparative performance eval-
uation of CNN to human operators which may be used in addition
to common comparison metrics such as precision and recall in
future studies.
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