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ABSTRACT

“Blue Amazon” is used to designate the Brazilian Economic

Exclusive Zone, which covers an area comparable in size to

that of its green counterpart. Indeed, Brazil flaunts a coastline

spanning 8000 km through tropical and temperate regions

and hosting part of the organisms accredited for the coun-

tryʼs megadiversity status. Still, biodiversity may be expressed

at different scales of organization; besides species inventory,

genetic characteristics of living beings and metabolic expres-

sion of their genes meet some of these other layers. These

metabolites produced by terrestrial creatures traditionally

and lately added to by those from marine organisms are rec-

ognized for their pharmaceutical value, since over 50% of

small molecule-based medicines are related to natural prod-

ucts. Nonetheless, Brazil gives a modest contribution to the

field of pharmacology and even less when considering marine

pharmacology, which still lacks comprehensive in-depth as-

sessments toward the bioactivity of marine compounds so

far. Therefore, this review examined the last 40 years of Brazil-

ian natural products research, focusing on molecules that evi-

denced anticancer potential–which represents ~ 15% of ma-

rine natural products isolated from Brazilian species. This re-

view discusses the most promising compounds isolated from

sponges, cnidarians, ascidians, and microbes in terms of their

molecular targets and mechanisms of action. Wrapping up,

the review delivers an outlook on the challenges that stand

against developing groundbreaking natural products research

in Brazil and on a means of surpassing these matters.

Anticancer Potential of Compounds from the Brazilian Blue Amazon
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Introduction
Brazil holds one of the largest coastlines for a country in the world,
with an extension of 8000 km crossing tropical and temperate re-
gions [1]. Despite the efforts of global inventory programs on ma-
rine biodiversity, like the Census of Marine Life, it is estimated that
Wilke DV et al. Anticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All righ
over 90% of the species found in the oceans lack proper descrip-
tion [2,3], and Brazil is no exception. During the past 3 decades,
an increasing number of programs aimed at informing on Brazilian
biodiversity have emerged, including the Program for Assessing
the Sustainable Potential of Living Resources of the Exclusive Eco-
nomic Zone (REVIZEE; https://www.mma.gov.br/biodiversidade/
49ts reserved.
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ABBREVIATIONS

ABCG2 ABC transporter G family member 2

BCRP breast cancer resistance protein

BGC biosynthetic gene clusters

BRL3A rat liver epithelial cells

DS disulfide dermatan sulfates

GAGs sulfated glycosaminoglycans

GNPS Global Natural Product Social Molecular

Networking

HS heparan sulfate

IAP inhibitory apoptosis protein

KS keto synthases

LAAs lipidic alpha-amino acids

NOTCH2 neurogenic locus notch homolog protein 2

NSCLC nonsmall cell lung cancer

PKS polyketide synthase

PRDX1 peroxiredoxin-1

ROS reactive oxidative species

SAR structure-activity relationships

SPSPA Saint Peter and Saint Paul Archipelago

US-FDA United States Food and Drug Administration
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biodiversidade-aquatica/zona-costeira-e-marinha/programa-
revizee) launched in 1994; the FAPESP Research Program on
Biodiversity Characterization, Conservation, Restoration, and S-
ustainable Use (BIOTA; http://www.biota.org.br/), which cele-
brated 20 y in 2019; and, more recently, the National System of
Research on Biodiversity (SISBIOTA; http://cnpq.br/sisbiota/
apresentacao/). All these efforts contributed to the description
of several unknown and endemic species; however, despite all
these efforts, Brazil is still a long way from a proper characteriza-
tion of its biodiversity and ecosystem functioning [4,5]. Good ex-
amples of unique Brazilian marine ecosystems are the reef system
at the Amazon River mouth dominated by large sponges [6] and
the Abrolhos Bank Reef, located in the south of Bahia state, hous-
ing the largest and richest reefs of the South Atlantic, including
6 endemic coral species [7, 8].

While recognized as a megadiverse country, Brazil has a timid
contribution to the field of marine biotechnology. A recent review
discussed a countrywide initiative launched by the Brazilian
Government to create the National Research Network in Marine
Biotechnology (BiotecMar, www.biotecmar.sage.coppe.ufrj.br) by
uniting research groups with different expertise but a common
aim: developing the marine bioeconomy through innovative re-
search [9]. Research in this area, especially related to natural ma-
rine products, which was initiated in the 1960s, yielded a signifi-
cant increase in the number and impact of the findings reported,
especially over the past 2 decades. Still, it remains mainly re-
stricted to universities and research institutes, and the results are
still in early stages when considering product generation [10–12].

From a pharmacological perspective, chemical diversity opens
up a multitude of possibilities, enthusing the discovery and devel-
opment of drugs to treat all sorts of ailments. Indeed, the value of
natural products as pharmaceuticals is extensively recognized,
50 Wilke DV et al. A
since over 50% of all small molecule-based medicines are, to some
degree, related to a natural product [13]. Especially for anticancer
therapy, in recent years, compounds frommarine sources have al-
ready shown a great impact, as tackling such disease is the pur-
pose of 8 out of the 13 approved marine-based drugs. Each of
these medicines conveys remarkable courses of development,
which have, moreover, instructed scientists on overcoming issues
related to supply and toxicity [14].

Bioactivity-guided fractionation protocols that routinely lead
to the isolation of novel compounds from crude chemical extracts
have expanded the chemical space of natural products [15].
Although the rates of discovery of new scaffolds are not increasing
as predicted by theoretical estimates, it is generally accepted that
there is still room for isolation of a vast number of new molecules
with interesting biological properties, especially when prioritizing
the access of unique genetic resources and using innovative
strategies [16]. In this sense, Brazilian biodiversity is an attractive
underexplored source where the impact of high-quality ground-
breaking research can potentially reveal a myriad of new bioactive
molecules. Indeed, the number of isolated compounds has stead-
ily increased over the last 2 decades, but it is quite obvious that
biological resources are still underexplored, especially with regard
to drug development [11,12]. Microorganisms, including fungi,
cyanobacteria, and bacteria, have seduced the natural products
community worldwide and in Brazil alike, receiving significant at-
tention as the reputed true producers of most bioactive com-
pounds isolated from marine invertebrates [12].

Studies with microorganisms brought not only unique metab-
olites and the means for a sustainable production of compounds
but also the possibility to mine genomes as a worthy alternative
path for drug discovery [17]. Genome mining techniques uncover
a diversity of “orphan” or “silent” routes that are a majority of
BGCs from which the expected chemistry is untraceable by tradi-
tional fractionation chemical protocols, or that expression is
downregulated under the growth conditions applied in the labo-
ratory for bacterial cultivation [18–20]. Nevertheless, the isolation
of the whole chemical universe predicted by genome mining is
probably not an attainable endeavor, while best attempts to
understand this complex chemical diversity are through combin-
ing the DNA-centered tools with other omics, especially those on
the very end of the information chain: the metabolomics [21]. In
this case, different strategies may be outlined targeting the larg-
est possible number of substances within the same analytical
technique, while keeping in mind that a majority of these com-
pounds remain to be identified [21]. Such rationale is widely used
to identify or indicate one or a group of metabolites related to a
specific effect, such as an organismʼs response to an environmen-
tal condition [22]. Nonetheless, integrative approaches of omics
data are gaining more attention as a powerful ally to optimize ef-
forts in the identification of potential drug candidates in complex
natural matrices.

There are few comprehensive reviews on marine natural prod-
ucts isolated from Brazilian organisms highlighting chemical di-
versity; however, those merely list the pharmacological activities
of isolated compounds [10–12,23]. In this context, to the best of
our knowledge, there is no previous publication addressing ma-
rine compounds with anticancer potential in terms of molecular
nticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All rights reserved.



Cnidarian Ascidian Bacteria

Sponge

Potential Anticancer Marine Natural Products from 
Brazilian Invertebrates and Microorganisms  (1980–2020)

Studied species 238

0 100 200 300 400 (count)

Isolated molecules 393

Anticancer molecules 61

Studies on MOA 31
Blue Amazon
(Brazilian EEZ)

Brazil

▶ Fig. 1 World map highlighting Brazil and the Brazilian Economic Exclusive Zone (EEZ). The bar graph inset depicts a numerical overview of the
achievements in the field of marine natural products in Brazil, narrowing down to those molecules that evidenced anticancer potential and, more-
over, have been studied for their mechanism of action.
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targets and mechanisms of action. Therefore, a literature search
was conducted, initially considering reports on isolated molecules
from invertebrates and microorganisms collected in the Brazilian
Economic Exclusive Zone, which was then followed by identifying
those studies describing anticancer potential and mechanism of
action of those compounds. With this in mind, the most promis-
ing compounds isolated from sponges, cnidarians, ascidians, and
microbes, whether in association with invertebrates or recovered
from marine sediments, were herein considered. Once omics ap-
proaches were applied, whether to advance the identification of
potential anticancer compounds in a complex mixture or to im-
prove the productivity of the active molecule based on the knowl-
edge of biosynthetic gene clusters, a discussion of these results
was included.

As shown in ▶ Fig. 1, molecules that evidenced anticancer po-
tential, including cytotoxic and antimetastatic activities, repre-
sent approximately 15% of the total number of marine natural
products isolated from Brazilian species, while half of these com-
pounds have been studied to some degree regarding their mech-
anism of action. These reports have revealed a variety of pheno-
typic events and cellular targets (▶ Table 1), including some novel
and relevant achievements to the anticancer drug discovery body
of knowledge, which can be appreciated in the following section.

The last section of this review explores the main challenges
that stand in front of innovative research in natural products in
Brazil and the perspectives to overcome issues particular to the
Brazilian scientific community as well as common issues world-
wide. These encompass avoidance of natural product redundancy
and enhancement of the biotechnological value of somewhat
“old” molecules that lack sufficient biological characterization.
Wilke DV et al. Anticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All righ
Exploring Marine Invertebrates and Associated
Microbiota from Brazilian Oceans as Sources
of Potential Anticancer Compounds
Sponges

Sponges are sessile invertebrates that belong to the phylum Pori-
fera and the most primitive multicellular animals to present effi-
cient defense mechanisms against predators [24]. The competi-
tion for space with other sessile and predatory organisms is be-
lieved to have been one of the factors for natural selection of the
means to produce a wide variety of secondary metabolites [25].
For this reason, sponges appear as very promising marine orga-
nisms in the search for bioactive compounds with anticancer, anti-
viral, anti-inflammatory, antibiotic, and other biological propri-
eties [26], and the Porifera account for the most studied animal
taxa in marine drug discovery [11].

In the early 1950s, the biomedical interest in sponges was
aroused by an important discovery carried out by Yale researchers
Werner Bergmann and Robert Feeney, credited by many authors
as the debut of the field of marine natural products: the
arabinonucleosides from the marine sponge Tectitethia crypta
(de Laubenfels, 1949) (Tethydae). These nucleosides were the
basis for the synthesis of the first drug of marine origin with anti-
cancer activity [27]. Launched in 1969, cytarabine (also known as
Ara-C) is a chemotherapy medication currently employed in the
routine treatment of patients with hematological cancers, such
as leukemia and lymphoma [28]. The next sponge-derived anti-
cancer marine drug would then be approved in 2010. Eribulin
51ts reserved.



▶ Table 1 Bioactivity and mechanism of action of compounds with anticancer potential obtained from marine organisms collected along the Bra-
zilian coast and oceanic islands.

Isolated compound Source Collection site Studies on bioactivity Reference

Sponges

Haliclonacyclamine E, arenosclerins
(A, B and C)

Arenosclera brasiliensis
Muricy & Ribeiro, 1999
(callyspongiidae)

João Fernandinho
Beach, Búzios, RJ

Cytotoxicity against HL-60, L929, B16,
and U138 cells. Cytoskeleton alterations.

[40,41]

Geodiamolides (A, B, H, and I) Geodia corticostylifera Hajdu,
Muricy, Custodio, Russo &
Peixinho, 1992 (Geodiidae)

Toque-Toque
Island, São Sebastião,
SP

Antiproliferative activity against T47D
and MCF7 cells. Cytoskeleton alterations
on actin backbone. Geodiamolide H: de-
creasedmigration and invasion of Hs578T
cells probably due to modifications in
actin cytoskeleton. Nontumoral epithelial
breast cell line (MCF-10A) remained
unaltered after treatment.

[46,47]

8bβ-hydroxyptilocaulin
Ptilocaulin

Monanchora arbuscula
(Duchassaing &Michelotti,
1864) (Crambeidae)

Marine State Park of
Pedra da Risca do
Meio, Fortaleza, CE

Cytotoxicity against HL-60, MDA‑MB‑435,
HCT-8, and SF-295 cells. Apoptosis induc-
tion.

[49,50]

Haliclonacyclamine F, arenosclerins
(D and E), madangamine F,
ingenamine G

Pachychalina alcaloidifera
Pinheiro, Berlinck & Hajdu,
2005 (Niphatidae)

São Sebastião
Channel, SP

Cytotoxic activities against SF 295,
MDA‑MB‑435, HCT-8, and HL-60 cells.

[53]

Two dihydrofurans (6-desmethyl-
6-ethylspongosoritin A and
Spongosoritin A) and 3 6-mem-
bered peroxides (plakortides)

Plakortis angulospiculatus
(Carter, 1879) (Plakinidae)

National Marine Park
of Fernando de
Noronha and Taman-
daré, PE

Cytotoxicity against HCT-116 and PC-3M
cell lines. Cell cycle modifications de-
pending on structural characteristics:
dihydrofurans induce G0/G1 arrest and
6-membered peroxides (plakortides)
deliver a G2/M arrest.

[49,56]

Cnidarians and associated microorganisms

18-acetoxipregna-1,4,20-
trien-3-one

Carijoa riisei (Duchassaing &
Michelotti, 1860)
(Clavulariidae)

São Sebastião, SP Cytotoxicity against SF-295,
MDA‑MB‑435, HCT-8, and HL-60.

[49]

3-O-methyl-amphidinolide P Stragulum bicolor van
Ofwegen & Haddad, 2011
(Clavulariidae)

Caponga Beach, CE Cytotoxicity against HCT 116. [66]

Punicinols (A, B, C, D, and E) Leptogorgia punicea
(Milne Edwards & Haime,
1857) (Gorgoniidae)

Aranhas Island, SC Cytotoxic activity against A549.
A synergistic effect of these compounds
with paclitaxel was observed.

[67]

Bc2 Bunodosoma caissarum
Corrêa in Belém, 1987
(Actiniidae)

Florianópolis, SC Cytotoxicity against U87 and A172, either
wild type or p53 mutant. Pore formation
on cell membrane. Cytotoxicity occurs
potentiated when combined with ap-
proved chemotherapeutic agents (AraC,
doxorubicin, and vincristine).

[68,69]

6β-Carboxyl- 24(R)-(8→ 6)-abeo-
ergostan-3β,5β-diol and 2 lipidic al-
pha-amino acids (LAAs) in mixture

Palythoa variabilis (Duerden,
1898) (Sphenopidae)

Pedra Rachada Beach,
Paracuru, CE

Ergostan: cytotoxicity against HCT 116.
LAAs: cytotoxicity against SF-295, HCT-8,
and HL-60. Apoptosis induction on HL-60
cells.

[73,75,77]

Chromomycins (A5, A6, A7, and A8) Streptomyces sp. BRA-384
isolated from Palythoa cari-
baeorumDuchassaing &
Michelotti, 1860 (Sphenopi-
dae)

Pedra Rachada Beach,
Paracuru, CE

Cytotoxicity against 501mel and
WM293A, RD, RH30, MCF-7, HCT 116,
and PC-3M. Chromomycins A5 and A6

bind toTBX2 transcription factor.

[76,78]

Ascidians and associatedmicroorganisms

Sebastianines (A and B) Cystodytes dellechiajei (Della
Valle, 1877) Polycitoridae)

São Sebastião
Channel, São Sebas-
tião, SP

Cytotoxicity against HCT 116 p53+/+,
HCT 116 p53−/−, HCT 116 p21+/+, and
HCT 116 p21−/− cells. Indication of a p53-
dependent mechanism of cell death.

[94]

cont.
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▶ Table 1 Continued

Isolated compound Source Collection site Studies on bioactivity Reference

Granulatimide
Isogranulatimide

Didemnum granulatum
Tokioka, 1954 (Didemnidae)

São Sebastião Chan-
nel, São Sebastião, SP
Araçá Beach, São
Sebastião, SP
Arvoredo Marine
Biological Reserve,
Florianópolis, SC

G2-checkpoint arrest inMCF-7mp53 cells.
Inhibition of kinases Chk1 and Cdk1.

[95,96]

Mixture of methyl esters (methyl
myristate, methyl palmitate, and
methyl stearate) and mixture of
glyceryl ethers {1,2-propanediol,
3-(heptadecyloxy), batyl alcohol,
and 1,2- propanediol, 3-[(methyl-
octadecyl)oxy]}

Didemnum psammatodes
(Sluiter, 1895) (Didemnidae)

Flexeiras Beach, Trairi,
CE

Cytotoxicity against leukemia cell lines
HL-60, Molt-4, CEM, and K562. Indication
of induction of programmed and acci-
dental cell death on HL-60 cell line.

[113]

Mixture of 2-hydroxy-7-oxostauro-
sporine and 3-hydroxy-7-
oxostaurosporine

Eudistoma vannameiMillar,
1977 (Polycitoridae)

Taíba Beach,
São Gonçalo do
Amarante, CE
Ponta Grossa Beach,
Icapuí, CE

Cytotoxicity against HL-60,Molt-4, Jurkat,
K562, HCT-8, MDAMB-435, and SF-295
cell lines. Cytotoxicity against PBMC.
Induction of G2 arrest in HL-60 cells.

[103]

Penicillic acid Aspergillus sp. EV-10 associ-
ated to E. vannameiMillar,
1977 (Polycitoridae)

Taíba Beach,
São Gonçalo do
Amarante, CE

Cytotoxicity against HCT-8 and
MDA‑MB‑435 cell lines.

[108]

Antracyclinones (4,6,11-trihy-
droxy-9-propyltetracene-5,12-
dione and 10β-carbomethoxy-
7,8,9,10-tetrahydro-4,6,7α,9α,11-
pentahydroxy-9-propyltetracene-
5,12-dione)

Micromonospora sp. BRA-006
associated to E. vannamei
Millar, 1977 (Polycitoridae)

Taíba Beach,
São Gonçalo do
Amarante, CE

Cytotoxicity against HCT-8 cell line. [111]

Dithiolpyrrolone Streptomyces sp. BRA-010
associated to E. vannamei
Millar, 1977(Polycitoridae)

Taíba Beach,
São Gonçalo do
Amarante, CE

Cytotoxicity against HCT 116, OVCAR-8,
NCI-H358, PC-3M, HL-60, and SF-295.
Induction of polynucleated cells, inhibi-
tion of cytokinesis, and apoptosis in
PC-3M cells. Indication of impairment of
cytokinesis motor proteins.

[112]

Tamandarins (A and B) Didemnum sp. Mamucabinhas
Beach, Tamandaré, PE

Inhibition of colony formation of BX‑PC3,
DU145, and UMSCC10b cells lines.
Inhibition of protein synthesis.
Indication of a didemnin-like mechanism
of action.

[114]

Dermatan sulfate [(IdoA2-GalNAc)
n, O-sulfated at C2 of the IdoA and
at C4 of the GalNAc]

Styela plicata (Lesueur, 1823)
(Styelidae)

Praia da Urca,
Rio de Janeiro, RJ

Inhibition of LS180 cells adhesion to
P-selectin in vitro and in vivo. Attenuation
of lung metastasis in mice injected with
MC-38 GFP or B16-BL6 cells. Indication
of antimetastatic effect dependent on
P-selectin.

[115]

Dermatan sulfate [(IdoA2-GalNAc)
n, O-sulfated at C2 of the IdoA and
at C6 of the GalNAc] and heparan
sulfate [(αGlcN−αIdoA-βGlcA)n,
sulfated at C2 of the IdoA and β-
GlcA and at C6 of the N-acetylated
α-GlcN]

Phallusia nigra Savigny, 1816
(Ascidiidae)

Angra dos Reis, RJ Dermatan sulfate: inhibition of LS180 cells
adhesion to P-selectin in vitro and in vivo.
Attenuation of lungmetastasis in mice
injected with MC-38 GFP or B16-BL6 cells.
Indication of antimetastatic effect depen-
dent on P-selectin. Heparan sulfate:
inhibition of LS180 cells adhesion to
P-selectin.

[115,118]

Sediment-associated microorganisms

Gliotoxin, Acetylgliotoxin G Dichotomomyces cejpii
BRF082

Pecémʼs offshore
port terminal, CE

Cytotoxicity against HCT 116 cell line. [122]

Malformins (A and C) Aspergillus niger BRF074 Pecémʼs offshore
port terminal, CE

Cytotoxicity against HCT 116 cell line. [130]

cont.

53Wilke DV et al. Anticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All rights reserved.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



▶ Table 1 Continued

Isolated compound Source Collection site Studies on bioactivity Reference

Fumitremorgin C Aspergillus sp. BRF030 Mucuripe Beach,
Fortaleza, CE

Cytotoxicity against HCT 116 cell line. [134]

Chromomycins (A2 and A3) Streptomyces sp. BRA-090 Paracuru Beach, CE Cytotoxicity against HCT 116, HL-60,
OVCAR-8, PC-3M, and MALME-3M.
Chromomycin A2: autophagy induction.

[138]

Prodigiosin Pseudoalteromonas sp.
BRA-007

Taíba Beach, CE Cytotoxicity against HCT-8, HL-60, MDA-
MB435, and SF-295. Selective cytotoxic
activity against cell lines overexpressing
the tyrosine kinase receptor ErbB-2.

[139]

Nonylprodigiosin,
cyclononilprodigiosin

Actinomadura sp. BRA-177 Saint Peter and Saint
Paul Archipelago, PE

Cytotoxicity against SK‑Mel-147,
HCT 116, and MCF-7 cell lines.

[145]

Diketopiperazines [cyclo(L‑Phe-
L‑Pro) and cyclo(L‑Trp-L‑Pro)]

Streptomyces sp. BRA-199 Saint Peter and Saint
Paul Archipelago, PE

Cyclo(l-Phe-l-Pro): cytotoxic against
HCT 116, OVCAR-8, and SF- 295 cell lines.
Cyclo(l-Trp-l-Pro): cytotoxic against
OVCAR-8 cell line.

[150]

The references listed are solely of molecules with anticancer potential obtained frommarine species collected in the Brazilian Economic Exclusive Zone.
Tumor cell lines origin according to tissue:A172, glioblastoma; A549, lung; B16,melanoma; B16-BL6,melanoma; BX‑PC3, pancreas; CEM, leukemia; DU145,
prostate; HCT 116, colon; HCT-8, colon; HL-60, leukemia; Hs578T, triple-negative breast cancer; K562, leukemia; L929, fibrosarcoma; LS180, colon; MALME-
3M,metastatic melanoma; MC-38 GFP, colon; MCF-7, breast; MDA‑MB‑435, melanoma; Molt-4, leukemia; OVCAR-8, ovary; PC-3M,metastatic prostate; RD,
rhabdomyosarcoma; RH30, rhabdomyosarcoma; SF-295, glioblastoma; SK‑Mel-147, melanoma; T47D, breast; U138, colon; U87, glioblastoma; UMSCC10b,
metastasis of laryngeous squamous cells; WM293A, melanoma; 501mel, melanoma.Nontumor cells origin according to tissue: MCF-10A, epithelial breast;
PBMC, peripheral blood mononuclear cells.
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mesylate, a structurally simplified synthetic analog of the tubulin
inhibitor halichondrin B, isolated from the marine sponge Hali-
chondria okadai (Kadota, 1922) (Halichondriidae) by Hirata and
Uemura [29], was developed into Halaven® and is currently used
for the treatment of metastatic breast malignancies and inoper-
able liposarcoma [30]. In phase I clinical trial is E7974, a synthetic
analog of the marine sponge natural product hemiasterlin that
has been made available to patients with refractory solid tumors
[31].

In Brazil, Porifera diversity comprises approximately 5.3% of
the 8553 valid species known worldwide [32], which corresponds
to 443 species, mostly from the Demospongiae class [33]. It is,
however, possible that a much larger number of species are still
unknown due to areas that remain completely unexplored along
the Brazilian coast. The localities reported as the most biodiverse
for the occurrence of sponge species are Salvador, with 72 species
identified, followed by Recife (68), Potiguar Basin (65), Fernando
de Noronha Archipelago (59), São Sebastião (55) and Arraial do
Cabo (52) [33].

Early investigations of marine sponges as resources for biomo-
lecules with cytotoxic activity can be attested in Berlinck and col-
laborators (1996). This study led to the isolation of halitoxin com-
plex from Amphimedon viridis Duchassaing & Michelotti, 1964
(Niphatidae), as observed from other Haplosclerida sponges, and
described different biological activities, including cytotoxicity, all
related to the lytic properties of these molecules [34]. Rangel and
collaborators [35] followed, assessing hemolytic, cytotoxic, and
neurotoxic activities in 24 different sponge species from the
southeastern Brazilian coast. The authors reported that nearly
30% of the sponge extracts tested showed moderate to strong in-
54 Wilke DV et al. A
hibition of the development of sea urchin eggs [35]. A few years
later, a screening of 40 extracts of marine sponges and ascidians
evaluated their antiproliferative potential on human breast cancer
cells (T47D) [36]. Seven extracts from Amorphinopsis sp., Areno-
sclera brasilensis, Cystodytes dellechiajei, Cliona aff. celata, Didem-
num sp., Hadromerida, and Scopalina ruetzleri (Wiedenmayer,
1977) (Scopalinidae) showed antiproliferative effects with IC50

≤ 30 µg/mL and produced strong effects on microtubulesʼ organ-
ization and on the cell cycle progression of T47D human breast
cancer cells [36]. Among endemic sponge genus in the Brazilian
Blue Amazon with cytotoxic effects, A. brasiliensis, Geodia cortico-
stylifera, Monanchora arbuscula, Pachychalina alcaloidifera, and Pla-
kortis angulospiculatus have been further studied by different re-
search groups and will be discussed here.

A. brasiliensis inhabits shallow waters in the coast of Rio de
Janeiro State, Southeastern Brazil [37], and the crude extract was
shown to have antimitotic proprieties in early stages of the devel-
opment of sea urchin eggs, inducing anomalies at the highest
tested concentrations [35]. Considering genotoxicity, this crude
extract showed a potential to protect DNA from various chemical-
ly-induced damage, suggesting an antimutagenic activity [38].
Furthermore, acetone (AreAc) and ethanol (AreEt) extracts of
A. brasiliensis were evaluated in a qualitative Salmonella reverse
mutation test. While AreAc showed significant toxicity against
test strains, AreEt revealed a protective activity against DNA le-
sions, agreeing with an antimutagenic effect [39]. Tetracyclic
alkylpiperidine alkaloids named arenosclerins A, B, and C, as well
as haliclonacyclamine E (▶ Fig. 2), were isolated from the extract
of A. brasiliensis and presented cytotoxic activity against human
HL-60 (leukemia), L929 (fibrosarcoma), B16 (melanoma), and
nticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All rights reserved.



▶ Fig. 2 Compounds with anticancer potential isolated from marine sponges from Brazilian Blue Amazon.
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U138 (colon) cancer cells at concentrations between 1.5 and
7.0 µg/ml [40,41]. In T47D (breast) cancer cells, arenosclerin A
and haliclonacyclamine E produced noteworthy effects against
microtubule integrity and cell cycle progression, indicating these
compounds may induce their cytotoxicity through disassembly of
the cytoskeleton (▶ Fig. 3a) [36].

In the 1980s, studies with administration of radioactively-la-
beled subunits suggested that precursor molecules of a wide vari-
ety of cyclic alkylpiperidine alkaloids, such as the 3-alkylpyridine
precursor or arenosclerins, were derived from a polyketide chain,
that is, synthesized by successive addition of acetate units accord-
ing to the function of enzymes of the PKS class [42]. Based on this
premise, Trindade-Silva and collaborators applied massive and
parallel amplicon sequencing to A. brasiliensis, allowing the explo-
ration of type I PKS as well as hybrid BGCs diversity housed in its
complex microbiome [43]. A phylogenetic reconstruction of 235
recovered KS contigs was performed to uncover a great diversity
of type I PKS families presented in this sponge microbiome, in-
cluding a novel and A. brasiliensis exclusive KS clade. However,
such clade could not be addressed to the still undescribed areno-
sclerins BGC.

The crude extract from G. corticostylifera, a marine sponge also
collected in Rio de Janeiro [44], was found to be highly toxic
against sea urchin embryos, inducing cell lysis even before inhib-
iting cell division [35]. This effect was connected to the capacity
of such extract in inducing the formation of ionic pores in the cell
Wilke DV et al. Anticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All righ
membrane, which also led to the release of hemoglobin from
erythrocytes and depolarization of nerve and muscle membranes,
leading to the death of treated mice through respiratory arrest
[45]. The cyclic peptides geodiamolides A, B, H and I (▶ Fig. 2) iso-
lated from G. corticostylifera presented antiproliferative activity
against breast cancer cell lines (T47D and MCF7) through induc-
ing actin cytoskeleton alterations. In turn, primary human fibro-
blasts and BRL3A were not affected following treatment with
these peptides, thus suggesting selectivity of such compounds
for malignant cells [46]. Geodiamolide H was additionally shown
to revert the malignant phenotype of the breast carcinoma cells
Hs578T, inducing polarized spheroid-like structures in a 3D envi-
ronment. Moreover, this marine depsipeptide also inhibited mi-
gration and invasion of Hs578T cells, seemingly through disrup-
tion of actin cytoskeleton (▶ Fig. 3b), while leaving nontumor
breast cells (MCF10A) unaffected [47].

M. arbuscula is a shallow-water marine sponge distributed in
the Tropical Western Atlantic [48] for which the crude methanolic
extract showed antibacterial and cytotoxic activities. This extract
yielded a myriad of guanidine alkaloids, namely isoptilocaulin,
mirabilin B, 8bβ-hydroxyptilocaulin, ptilocaulin, and a mixture of
the 8β- and 8α-epimers of 8-hydroxymirabilin [49,50]. Com-
pounds 8bβ-hydroxyptilocaulin and ptilocaulin (▶ Fig. 2) present-
ed IC50 values in the range of 7.9 to 61.5 µM, and 5.8 to 40.0 µM,
respectively, over a mini panel of human tumor cell lines. Ptilocau-
lin was further tested in HL-60 leukemia cells, revealing the induc-
55ts reserved.



▶ Fig. 3 Schematic model of the mechanisms of action of compounds isolated from marine sponges Arenosclera brasiliensis (left, a) and Geodia
corticostylifera (right, b). Arenosclerin A and haliclonacyclamine E, isolated from the first sponge, cause tubulin disorganization and fragmentation,
inducing the formation of thick bundles of tubulin and change in the epithelial cell morphology to a rounded shape. Geodiamolide H, obtained from
the later species, causes accumulation of actin filaments in the cellular membrane, actin fragmentation, and mesenchymal to epithelial transition,
which reduces cellular migration and antimetastatic potential.
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tion of cell death by apoptosis as a possible mechanism of action
for this guanidine compound [50].

P. alcaloidifera [51] is a shallow-water marine sponge from the
São Sebastião channel and its environs (Tropical Southwestern
Atlantic). The chemical investigation of MeOH crude extract led
to the isolation of 6 new nitrogenous metabolites, including in-
genamine G, as well as a mixture of new cyclostellettamines G,
H, I, K, and L with the previously known cyclostellettamines A–F
[52]. Four bis-piperidine alkaloids (madangamine F, [▶ Fig. 2], hal-
iclonacyclamine F, and arenosclerins D and E) were further iso-
lated from this and displayed cytotoxic activity against SF 295 (hu-
man CNS), MDA-MB435 (human breast), HCT 8 (colon), and HL60
(leukemia) cancer cell lines [53]. The most prominent alkaloid iso-
lated from P. alcaloidifera was ingenamine G (▶ Fig. 2), which
showed cytotoxicity against human proliferating lymphocytes
(IC50 15.0 µg/mL) and genotoxicity, inducing strand breaks on
DNA, which was correlated with the mutagenic and carcinogenic
activity of the molecule [54].

P. angulospiculatus was described in shallow waters of the
Fernando de Noronha Archipelago and Tamandaré (Northeastern
Brazilian coast, Pernambuco State) [55]. Fractionation of the
crude extract afforded the isolation of 1 new polyketide, along
with 5 known polyketides, which were tested for antileishmanial,
antitrypanosomal, antineuroinflammatory, and cytotoxic activ-
ities [49]. Among the isolated compounds, plakortide P showed
antiparasitic activity [49]. Further studies have been done com-
bining aspects of compound isolation to understand the SAR and
associated biological activity in a complex panel of natural prod-
56 Wilke DV et al. A
ucts isolated from marine sponges in the Plakortis genus [56].
Therein, 3 new plakortides, along with known natural products
(spongosoritin A and plakortide P, ▶ Fig. 2), were isolated from
P. angulospiculatus collected off the northeast coast of Brazil and
showed cytotoxic activities against HCT 116, PC-3M, and MRC-5
cell lines, with IC50 values ranging from 0.2 to 10 µM, and the abil-
ity to hamper different phases of the cell cycle [56]. The plakorti-
des were divided into 2 groups according to the mode of action
observed by these compounds: while dihydrofurans induced a
G0/G1 arrest, 6-membered peroxides delivered a G2/M arrest
and an accumulation of mitotic figures [56]

The occurrence of a rich microbiome associated with Brazilian
marine sponges has been revealed through many investigations
[43,57]. Cultivation efforts have led to the isolation of a collection
of 98 heterotrophic bacteria from the sponge A. brasiliensis, of
which approximately 28% displayed antibiotic activity [58]. One
strain, Pseudovibrio denitrificans Ab134, was further shown to pro-
duce bromotyrosine-derived alkaloids, which have been previ-
ously isolated exclusively from marine sponges [59]. Neverthe-
less, compounds obtained from fungal and bacterial communities
associated with marine sponges have been evaluated majorly for
anti-inflammatory, antibiotic, antiviral, and cytotoxic activities;
however, the observed cytotoxicity on cancer cells was not very
stimulating, and most of isolated compounds were further
studied for antiviral properties [60–63]. Indeed, a role of microbial
sponge symbionts in the production of cytotoxic compounds that
can be potentially applied in anticancer therapies remains to be
better studied and evaluated.
nticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All rights reserved.



▶ Fig. 4 Compounds with anticancer potential isolated from marine cnidarians from Brazilian Blue Amazon.
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Cnidarians

Many Cnidaria species are crucial for coral reef building and bal-
ance. The animals of this Phylum live exclusively in marine envi-
ronments and are among the most prolific groups of producers
of cytotoxic molecules. The Blue Amazon shelters over 50 species,
and nearly half of these are described as endemic to the Brazilian
coast [63,64]. However, cnidarians assessed for cytotoxic activity
include only a few species belonging to the Anthozoa class, which
will be described hereafter.

Two species of octocoral were studied for cytotoxicity, and
their isolated compounds showed weak potency. Carijoa riisei
from São Paulo was reported to produce the steroid 18-acetoxy-
pregna-1,4,20-trien-3-one (▶ Fig. 4), which showed activity
against the cell lines SF295 (glioblastoma), MDA-MD435 (breast
cancer), HCT 8 (colon cancer), and HL60 (leukemia) [65]. The
3‑O-methyl derivative of amphidinolide P (▶ Fig. 4) obtained from
Stragulum bicolor, collected at Caponga beach, Ceará, was cyto-
toxic on colon cancer (HCT 116) cells [66].

A series of new polyoxygenated sterols was isolated from the
gorgonian Leptogorgia punicea from Aranha Islands, Santa Catari-
na. These 5 punicinols (A–E, ▶ Fig. 4) depicted cytotoxicity
against a lung cancer (A549) cell line. While punicinols A and B dis-
played moderate cytotoxic, C–E were 3 to 7 times more potent.
Wilke DV et al. Anticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All righ
Such a difference in bioactivity was attributed to the absence of
the double bond at the side chain of later punicinols [67].

The sea anemone Bunodosoma caissarum from Florianopolis,
on the southern Brazilian coast, was reported to produce toxin
Bc2, which is cytotoxic against tumor cells [68]. Bc2 acts as a cy-
tolysin, forming pores on the targeted cell membrane, thus pro-
ducing cytotoxic and cytolytic effect. Cytolysins depict remark-
able stability in a water-soluble state or as an integral membrane
pore. These cytolytic toxins can induce cancer cell death alone or
when associated with anticancer agents [69]. The association of
subcytotoxic concentration of Bc2 with anticancer drugs potenti-
ated the effects of chemotherapeutics such as Ara C, doxorubicin,
and vincristine against glioblastoma cell lines U87 and A172 in
vitro [68].

Zoanthids from the Palythoa genus and their associated bacte-
ria are a rich source of cytotoxic molecules. Their chemically and
genetically rich profiles were assessed through P. variabilis and
P. caribaeorum along the Brazilian coast [70]. The MS-based me-
tabolomics followed by GNPS [71] analysis revealed the presence
of many chemical compounds, including mycosporine and related
amino acid derivatives, zoanthid alkaloids, ecdysteroids, phospha-
tidylcholine derivatives, indole diterpenes, and sulphonocera-
mides. A major influence of geographical location was observed
on the chemical divergences among samples when compared to
57ts reserved.
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species distinction. Interestingly, analysis of the microbial com-
munity by metagenome DNA sequencing showed that P. variabilis
hosts more alphaproteobacteria and deltaproteobacteria, where-
as gammaproteobacteria preferentially associates to P. caribaeo-
rum. However, no integrative analysis of metabolomics and meta-
genomics was performed.

Altogether, 30 compounds have been isolated from Palythoa
species or their associated bacteria [72–75], from which 7 evi-
denced cytotoxic activity against tumor cells [73,75,76]. Two
LAAs (▶ Fig. 4) with long alkyl chains [75] and 1 sterol, the β-nor-
ergostan-3β-5β-diol-6β-carboxyl acid (▶ Fig. 4) [73], isolated
from P. variabilis displayed cytotoxicity against cancer cells in vitro.
The results on the LAAs highlighted some interesting novelties.
This was the first report on the occurrence of this group of mole-
cules in a natural source, while alkyl chains of the isolated mole-
cules were shown to be even longer than their typical synthetic
analogs. Additionally, this was the first study on the cytotoxic ac-
tivity of LAAs. IC50 values for the isolated compounds were found
in ng/mL magnitudes against glioblastoma (SF-295), colon cancer
(HCT 8), and leukemia (HL-60) cell lines. A further study com-
pared the cytotoxicity of natural and synthetic LAAs, shedding
light on their structure activity relationship [77]. This investiga-
tion revealed that cytotoxicity of these substances increases pro-
portionally to the alkyl chain; once the naturally occurring LAAs
possessed longer alkyl chains, they were, thus, more potent than
any of their 14 synthetic counterparts. Finally, Wilke and collabo-
rators (2010) described LAAs as elicitors of programmed cell
death in HL-60 cells.

The actinobacteria Streptomyces sp. BRA384 was selected
among 9 isolated strains associated to P. caribaeorum collected at
Ceará State due to a highly cytotoxic ethanol extract against HCT
116 cancer cell line [76], from which 3 new dextrorotatory chro-
momycins (A6, A7, and A8), along with chromomycin A5 (CA5)
(▶ Fig. 4), were isolated. Chromomycins are a promising class of
anticancer candidates, and all 4 chromomycins obtained were
highly cytotoxic against a tumor cell line mini panel, showing
IC50 values in nM range. CA5 was the most effective one across
all tested cells, displaying 10-, 200-, and 300-fold higher potency
than doxorubicin on metastatic prostate cancer, metastatic mela-
noma, and colon cancer cells, respectively [76]. Chromomycins
are typically known to bind DNA, causing inhibition of replication
and transcription and further induction of programmed cell
death. In addition to the DNA-binding properties, CA5, through a
target-directed approach, was shown to bind the transcription
factor TBX2, which impacts the cytotoxic activity of this com-
pound [78]. The TBX2 transcription factor is overexpressed in sev-
eral types of cancer and contributes to increased cell proliferation
and bypass of senescence and, therefore, has been considered a
potential target for new anticancer therapies (▶ Fig. 5).

Ascidians

Ascidian typically describe the sessile, filter-feeding, tunic-
wrapped invertebrates from the class Ascidiaceae, the most rep-
resentative taxa for phylum Chordata, subphylum Tunicata.
Therefore, these organisms may also be referred to by the broader
term “tunicate”: The ascidians are a diverse and abundant group
58 Wilke DV et al. A
that present themselves in solitary or colonial forms widespread
mainly among shallower waters in marine environments [79].

From the natural products perspective, ascidians are among
the best-studied groups and evidence has shown them, and their
associated microorganisms, to abound in inventive chemistry with
interesting bioactivity [80,81]. Three ascidian-sourced molecules
have made it all the way to the clinics and figure among the list of
drugs available for cancer treatment (reviewed by [14]). Trabecte-
din (ET-743), a peculiar kind of DNA alkylator, is an alkaloid ob-
tained from Ecteinascidia turbinata Herdman, 1880 (Perophoridae)
and the active principle of Yondelis, a chemotherapeutic agent
used for treating soft tissue sarcoma since 2007 [82,83]. Lurbi-
nectedin, an analogue thereof, has just recently been approved
for the treatment of metastatic small cell lung cancer as Zepzelca
[84]. The cyclic depsipeptide plitidepsin (aplidin, dehydrodidem-
nin B), isolated from Aplidium albicans (Milne Edwards, 1841)
(Polyclinidae), is a quite unusual inhibitor of protein synthesis that
makes up Aplidin, approved in late 2018 for the treatment of mul-
tiple myeloma [14,85,86].

The Brazilian coast and islands are home to a diversity of asci-
dian species [87–91]. Particularly, the southeastern region of Bra-
zil has distinguished itself within the Atlantic Ocean as one of 3 re-
gions with peak species richness and as one in 8 regions with high
endemicity regarding this group [92]. Analogously, a higher num-
ber of southeastern ascidians have been examined for the chem-
istry they host or surveyed for bioactivity. Seleghim et al. [93]
screened 99 extracts obtained from ascidians (fromwhich 20 were
derived from then unidentified species) collected predominantly
from sites along the coastline of São Paulo and Rio de Janeiro
States–but also Bahia–and revealed that 60% of these extracts
presented bioactivity in at least one of the 5 assays employed.
Another study conducted by Prado et al. [36] assessed 16 extracts
from ascidians from the southeastern Brazilian coast and reported
that one obtained from Cystodytes dellechiajei induced in vitro anti-
proliferative effects against breast cancer cells through disruption
of their cytoskeleton. Continuous studies with this extract led to
the isolation of the pyridoacridine alkaloids sebastianines A and B
(▶ Fig. 6), named as a reference to the site of species collection,
the São Sebastião Channel, São Paulo [94]. These compounds dis-
played cytotoxicity against p53 or p21 knockout HCT 116 cells;
however, cells expressing p53 were slightly more sensitive to se-
bastianines.

A pair of polyheteroaromatic alkaloids, granulatimide and iso-
granulatimide (▶ Fig. 6), were obtained from Didemnun granula-
tum, collected around São Sebastião, São Paulo, and were shown
to induce G2-arrest in the cell cycle of breast cancer MCF-7 cells.
Further studies have shown them to strongly inhibit the kinases
Chk1 and Cdk1, which are important players in the G2-M transi-
tion and promising target for cancer treatment (▶ Fig. 7). As a
matter of fact, these molecules were revealed through a rational
search using a high-throughput assay directed at identifying G2
checkpoint modulators and were the first examples of this new
class of cell cycle inhibitors specific for the G2 phase [95,96], and
were later shown to be stored in bladder cells in the ascidian tunic,
suggesting a protective role to the host [97]. In a subsequent re-
investigation of the crude extract of D. granulatum, yet another
derivative, 6-bromogranulatimide [98] was isolated.
nticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All rights reserved.



▶ Fig. 5 Schematic model of the mechanisms of action of chromomycin A5 (CA5) isolated from the actinobacteria Streptomyces sp. BRA384 asso-
ciated to the zoanthid Palythoa caribaeorum. CA5 forms Mg+2 dependent dimers that bind to double strand DNA, thus inhibiting DNA replication and
transcription and inducing programmed cell death. CA5 inhibits the T‑box 2 transcription factor (TBX2), inducing antiproliferative and antimeta-
static effects by allowing the expression of cyclin-dependent kinase 1 (p21) and e-cadherin, respectively. CA5 also induces autophagy.
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Nevertheless, ascidians from the Northeast coast also revealed
pharmacological potential, as shown by Jimenez et al. [99], where
6 among 10 extracts analyzed displayed some kind of cytotoxic
activity, notably that obtained from Eusdistoma vannamei. Subse-
quent studies with this species, the most abundant one on the
coast of Ceará State, led to the identification of purine and pyrimi-
dine derivatives [100,101], a tyrosine peptide derivative [102],
and, remarkably, 2 novel alkaloids, 2-hydroxy-7-oxostaurosporine
and 3-hydroxy-7-oxostaurosporine (▶ Fig. 6) [103], which pre-
sented high selectivity towards cancer cells and induced potent
G2-arrest at nM concentrations in a leukemia cell line. Interesting-
ly, Schupp and collaborators [104,105] reported the isolation of
12 staurosporine derivatives from E. toealensis Millar, 1975 (Poly-
citoridae) collected in Micronesia. These compounds have also
been shown to have, generally, antiproliferative effects against
leukemia cells at a nM order [106]. Staurosporines form a group
of highly cytotoxic natural compounds and synthetic derivatives
structured around an indolocarbazole skeleton. The inaugural
molecule, staurosporine, was isolated from the fermentation
broth of soil actinobacteria Streptomyces staurosporeus, drafted
from a screening program directed at identifying inhibitors of
protein kinase C [107]. Recently, midostaurin (Rydapt), a multi-
target-protein kinase inhibitor semi-synthetic derivative of stauro-
sporine, has been approved by the USFDA to treat acute myeloid
leukemia in patients carrying a specific mutation, FLT3, in combi-
nation with typical chemotherapy (US FDA, 2017).
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Further investigations on E. vannamei looked into the associ-
ated fungi [108], leading to the isolation of penicillic acid
(▶ Fig. 6) from the cultures of Aspergillus sp. EV10 strain. Bacteria
associated with the ascidian [109,110] yielded novel however
moderately cytotoxic anthracyclinones (▶ Fig. 6) produced by
the Micromonospora sp. BRA006 strain [111], and an anticytoke-
nesis dithiolpyrrolone (▶ Fig. 6) isolated from the growth broth
of the Streptomyces sp. BRA010 strain [112]. The latter com-
pound, differently from most natural products that prevent cyto-
kinesis, does not act on tubulin but seemingly on motor proteins
that initiate this process (▶ Fig. 8), thus disclosing a chemical scaf-
fold with a rather uncommon but assuring mode of action to be
considered in the anticancer drug discovery trail.

Another study with Didemnum genus identified 14 compounds
from the ethanolic extract of D. psamatodes collected at the coast
of Ceará, among which a mixture of 3 methyl esters (methyl
myristate, methyl palmitate, and methyl stearate, ▶ Fig. 6) and
the mixture of 3 glyceryl ethers–(1,2-propanediol, 3-(heptadecy-
loxy), batyl alcohol, and 1,2- propanediol, 3-[(methyloctadecyl)
oxy] (▶ Fig. 6)–were moderately cytotoxic against 4 leukemia cell
lines. Additionally, inhibition of DNA synthesis and elicitation of
programmed and accidental cell death by the methyl esters on
HL-60 cells was observed [113]. Furthermore, tamandarins A and
B (▶ Fig. 6), cyclic depsipeptides that bear great structural similar-
ity to the didemnins and are thus suggested to have a similar
mechanism of action, have been isolated from a Didemnum sp.
collected in Tamandaré, on the coast of Pernambuco, also in the
59ts reserved.



▶ Fig. 6 Compounds with anticancer potential isolated from ascidians from Brazilian Blue Amazon.
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northeast of Brazil. Tamandarin A proved to be highly cytotoxic
and slightly more active than didemnin B in the colony-forming
clonogenic assay against human tumor cell lines, with mean IC50

in the nM range [114]. The authors also report this compound to
be a strong inhibitor of protein biosynthesis, offering additional
shreds of evidence that support a didemnin-like activity of these
molecules.

Considering the macromolecules, Styela plicata and Phallusia
nigra, solitary species collected in Rio de Janeiro State, were
shown to produce biologically active GAGs that have shown anti-
coagulant, antithrombotic, and antimetastatic activities [115–
117]. DS with different sulfation patterns–2,4-O-sulfated (2,4-
DS) and 2,6-O-sulfated (2,6-DS) to their core structure (IdoA2-
GalNAc)n–were obtained from the internal organs of the afore-
mentioned species, respectively, and were shown to inhibit bind-
ing of human adenocarcinoma LS-180 cells to immobilized P-se-
lectin at comparable potencies, which were, in turn, 2-fold higher
than that of mammalian DS. P-selectin is an endogenous glyco-
protein responsible for cell-cell adhesion and plays a role in
pathogenic processes such as inflammation and metastasis. In-
deed, the ascidian DSs were further shown to attenuate metasta-
sis in in vivo models using mouse colon carcinoma cells stably ex-
60 Wilke DV et al. A
pressing GFP (MC-38GFP) and in mouse melanoma cells (B16-
BL6), however with less efficiency [118]. Another ascidian GAG,
this time a peculiar HS with a high content of 2-sulfated β-glucu-
ronic acid isolated from the viscera of P. nigra, displayed an 11-fold
increased potency, when compared to mammalian heparin, in re-
ducing the activity of P-selectin. Moreover, such HS was rendered
nearly inactive as an anticoagulant, thus offering a more efficient
and selective alternative to heparin-based antimetastatic therapy
[119].

Studies based on molecular networks of ascidian-associated
microbiota have emerged as an interesting approach to the
identification of cytotoxic molecules. In this sense, ascidians,
along with sponges and sediments from Rocas Atoll, a unique en-
vironment in the equatorial Atlantic Ocean hosting a large num-
ber of endemic species, have been assessed for the evaluation of
metabolomic diversity and pharmacological potential of the in-
habiting microbiota. From the 80 bacterial strains recovered,
39% were recovered from ascidians, 36% from sponges, and 25%
from sediment samples. Many chemical classes of compounds,
such as diketopiperazines, lipopeptides, staurosporines, suruga-
mides, sphinganines, erythromycins, TAN antibiotics, and rifamy-
cins, were annotated within the extracts using GNPS-based
nticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All rights reserved.



▶ Fig. 7 Schematic model of the mechanism of action of granulatimide and isogranulatimide isolated from the ascidian Didemnum granulatum.
These compounds inhibit checkpoint kinase 1 (Chk1) and induce cell cycle arrest in G2 phase predominantly in cells with impaired p53 function.

▶ Fig. 8 Schematic model of the mechanism of action of pyrroloformamide isolated from the actinobacteria Streptomyces sp. BRA010 associated to
the ascidian Eudistoma vannamei. This compound induces bypass of cytokinesis due to inhibition of motor proteins polo-like kinase (Plk), protein
regulator of cytokinesis (Prc), and Ras homologue gene family member A (RhoA). Additionally, pyrroloformamide modulates cyclin dependent
kinases (Cdks) 1 and 2 and cyclins A, B1, and H. Cells exposed to pyrroloformamide show polynucleation, impaired spindle formation, and pro-
grammed cell death features.
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▶ Fig. 9 Compounds with anticancer potential isolated from marine sediment-associated bacteria from Brazilian Blue Amazon.
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molecular networking [120]. Further analysis using the tool
DEREPLICATOR+ [121] of highly cytotoxic extracts obtained from
Streptomyces sp. BRB298 and BRB302, strains isolated from a yet
unidentified ascidian, allowed the annotation as new novonestmy-
cin derivatives, glycosylated macrolides with remarkable cytotoxic
activity against cancer cells, with IC50 values reported in the sub-
nanomolar range. These data reinforced the value of omics-based
strategies in the search of anticancer compounds from marine
sources.
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Further Accessing Brazilian Marine
Environments: Studies with Sediment-
associated Microbiota

Despite the relative scarcity of data, a consistent increase in stud-
ies aimed at bioprospecting the pharmacological potential of mi-
croorganisms associated with Brazilian marine sediments can be
observed in recent years. Ióca and collaborators [12] reported
that merely 3% of the total natural products isolated from micro-
bial sources comes from marine sediments, which mainly com-
prise peptides, followed by terpenes. Despite this small number
when compared to natural products retrieved from plant and soil
microorganisms, the structural diversity and richness of microbial
marine natural products added to their unique activity and dis-
tinctive mechanisms of action sufficiently justifies the continuous
investigation of such a source of compounds.
62 Wilke DV et al. A
Sediments from 2 harbor areas in Ceará State, on the North-
eastern coast of Brazil, have been investigated for fungi producing
biologically active compounds. From sediment collected at Pe-
cémʼs offshore port terminal, 48 fungal strains were recovered
and their extracts evaluated for cytotoxicity against HCT 116 cells,
from which that obtained from Dichotomomyces cejpii BRF082 was
identified as the most promising. It was then shown that the strain
produced a series of sulfur-containing diketopiperazines, from
which gliotoxin and acetylgliotoxin G (▶ Fig. 9) were cytotoxic
against HCT 116 cell line [122]. Although this study did not ex-
plore the mechanisms underlying the observed antiproliferative
activity, there are many other reports on gliotoxin cytotoxic prop-
erties revealing a multifaceted signaling pathway linked to their
activity against different cancer cells [123–125]. This molecule
has demonstrated potential in targeting the Wnt/β-catenin path-
way [123], farnesyltransferase and geranylgeranyltransferase
[126], and the NOTCH2 [125,127]. Besides, gliotoxin was shown
to activate JNK and Bim-mediated apoptosis through a RhoA-
ROCK-MKK4/MKK7-dependent pathway [128] and to exert anti-
angiogenic activity through disruption of the HIF-1α/p300 com-
plex in prostate cancer cell lines and xenograft models [129].

Another strain recovered from the sediment samples from
Pecémʼs offshore port terminal, Aspergillus niger BRF074, yielded
a new furan ester derivative containing an unprecedented
nitrogenated skeleton, the cyclopeptides malformins A and C
(▶ Fig. 9), and several diketopiperazines. The furan ester deriva-
tive showed cytotoxic activity against HCT 116 tumor cell line
[130], but the mechanisms of action or target were not investi-
nticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All rights reserved.
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gated. The aforementioned study did not further assess the bio-
activity of malformins A and C; however, these cyclic pentapepti-
des are acknowledged for their cytotoxic activity in several other
cancer cell lines [131–133]. Still, malformin C demonstrated sig-
nificant acute toxicity that may limit its use as chemotherapeutic
agent [132].

From another Aspergillus sp. (strain BRF030) recovered from
sediments from the port of Mucuripe, also in the State of Ceará,
2 compounds with cytotoxic activity against HCT 116 cells were
isolated: fumitremorgin C and 12,13-dihydroxyfumitremorgin C
[134]. Fumitremorgin C (▶ Fig. 9) is an indolyl diketopiperazine al-
kaloid that was the first identified inhibitor of BCRP [135]. The
BCRP, also named ABCG2, is a membrane protein half-molecule
ABC transporter, responsible for pumping out a wide range of
chemotherapeutic agents and, thus, it functions as a key player
in the multidrug-resistance phenotype of cancer cells. Fumitre-
morgin C reversed chemoresistance to distinct chemotherapeutic
agents including mitoxantrone, topotecan, and doxorubicin in co-
lon cancer [136] and almost completely reversed the chemo-
resistance to mitoxantrone in breast cancer that overexpresses
BCRP [137]. However, despite its elevated inhibitory potency, its
clinical use was abolished due to neurotoxic side effects [135].

Marine bacteria recovered from sediments collected in the
coast of Ceará have also been assessed. Three chromomycins,
typically known as DNA intercalators (above mentioned and dis-
cussed in the section “Cnidarians”), were isolated from Streptomy-
ces sp. BRA090, also recovered from dredged sediments from the
port of Mucuripe. Chromomycin A2 displayed cytotoxicity in the
nM-range against a 7-cell lines panel and induced autophagy in a
metastatic melanoma cell model [138].

Moreover, the tripyrrole red pigment prodigiosin, a member of
the prodiginine class of natural products recognized for their anti-
cancer potential, was isolated from the growth broth of Pseudoal-
teromonas sp. BRA007 (M23), a strain obtained from Taíba Beach,
Ceará state. This study described the cytotoxicity of prodigiosin in
a 4-tumor cell line panel and, remarkably, a nearly 100-fold selec-
tivity towards a human breast epithelial cell line, HB4a, stably
transfected with cDNA for the receptor tyrosine kinase ErbB-2, in
comparison to the parental cell line [139]. Prodigiosin, which is
known to induce apoptosis in cancer cells through an intricate,
multi-target but not fully characterized mechanism, has been
shown to reduce GSK-3β/NAG‑1 [140] and JNK/p38/RAD51
[141], as well as to downregulate the expression of members of
the IAP family of proteins (▶ Fig. 6) [142]. This compound demon-
strated cytotoxicity against a wide range of human cancer cell
lines and, to a lesser extent, to nonmalignant cells. The wide vari-
ety of mechanisms related to cytotoxicity of prodigiosin include
induction of DNA damage; acidification of intracytoplasmic com-
partment; and modulation of kinases pathways [142,143]. Addi-
tionally, it has been shown that prodigiosin is able to induce in-
tense cell stress such as autophagy and endoplasmic reticulum
stress on tumor cells, which could also trigger cell death [144]

Furthermore, the cytotoxic strain Actinomadura sp. BRA177,
recovered from SPSPA, a set of islets and rocks distant 590 nmi
from continental Brazil, in the equatorial Atlantic Ocean, yielded
prodiginine derivatives, such as nonylprodigiosin and cyclononyl-
prodigiosin (▶ Fig. 9), that displayed antiproliferative activity
Wilke DV et al. Anticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All righ
against tumor and nontumor cells [145]. Shotgun sequencing of
BRA177 genome revealed 22 biosynthetic gene clusters related
to the production of ribosomally- (lantipeptides) and nonriboso-
mally-derived (nonribosomal peptide synthetase) bioactive pep-
tides, terpenes, siderophores, and polyketides, including the one
responsible for the production of the isolated prodiginines [145].
These particular prodiginines were isolated in 1969 and 1970, re-
spectively, from Actinomadura madurae [146,147] and, adjoined
by amply studied prodigiosin, are members of a family of red-pig-
mented tripyrroles. Their bioactivities have not been broadly ad-
dressed so far (▶ Fig. 10). However due to structural resemblance
to prodigiosin, it is believed that prodiginines may share similar
modes of action [143]. Still, prodigiosin and the synthetic prodigi-
nine derivative obatoclax mesylate–which has completed phase II
clinical trials for the treatment of various cancers–were shown to
bind the BH3 domain of Bcl-2 protein, a protagonist in antiapo-
ptotic signaling [148,149].

Indeed, the SPSPA has shown additional favorable evidence to
validate the assessment of the inhabitant marine microbial diver-
sity for their pharmacological potential. Among culturable actino-
bacteria isolated from sediments collected therein, 268 strains
were isolated and 94 were tested for cytotoxicity of their extracts,
from which 26 produced cytotoxic extracts. Chemical analysis by
HPLC‑MS/MS suggested the production of known cytotoxic com-
pounds, such as staurosporines and piericidins and, interestingly,
saliniketals and rifamycins [150]. The latter class of compounds
are typical natural products synthesized by bacteria of the Salinis-
pora genus. Indeed, the Salinispora have attracted much attention
as these obligate marine bacteria house unique biosynthetic path-
ways and, therefore, are a prolific spring of natural products [151].
Specifically, the species S. tropica is the producer of marizomib, a
b-lactone-g-lactam proteasome inhibitor that is currently under-
going phase III clinical trials for the treatment of glioblastoma
and multiple myeloma [14]. Following this hint, further studies
then confirmed the occurrence of Salinispora sp. at the SPSPA
[81], which was the first report of this genus in Brazilian waters,
and compared the metabolomics profile of strictly marine actino-
bacteria Salinospora arenicola and S. pacifica among strains occur-
ring in Brazilian and Portuguese islands [152]. By using the spec-
tral library search from GNPS, the authors showed that S. arenicola
strains isolated from Brazilian waters are able to produce the mo-
lecular families of staurosporine, desferrioxamine, rifamycin, fer-
roxamine, and saliniketal, typical compounds to the metabolome
of S. arenicola. Through inspection of the molecular networking, a
new saliniketal analog with a difference of a methyl group was
found [152].

Another strain recovered from the SPSPA that gave a cytotoxic
extract, Streptomyces sp. BRA199, was subjected to a bioassay-
guided fractionation to yield piericidin A and 3 diketopiperazines
[150]. Although the first compound was not particularly assessed
therein for bioactivity, piericidins are widely known as potent cy-
totoxins, originally isolated from actinobacteria, especially from
Streptomyces sp. Due to their structural resemblance to coenzyme
Q, it was proposed that piericidins act as their antagonists. In-
deed, they are specific and effective NADH-ubiquinone oxido-
reductase (complex I) inhibitors in the mitochondrial electron
transport chain [153]. Moreover, piericidin A directly interacts
63ts reserved.



▶ Fig. 10 Schematic model of the mechanism of action of prodigiosin isolated from the bacteria Pseudoalteromonas sp. BRBA007 from marine
sediment. Prodigiosin induces a milieu of cell perturbations, including DNA alkylation, inhibition of kinases, and apoptosis, through modulations
of key players such as IAPs and Bcl2. In agreement with these multiple targets, cells exposed to prodigiosin display several phenotypic features of
ER-stress and programmed cell death. Interestingly, this compound shows increased cytotoxicity on breast cancer cells overexpressing ErbB2.
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with the protein PRDX1, co-localizing with that in the nucleus.
This promotes increased expression of PRDX at mRNA and protein
levels, further inhibiting key genes involved in the progression of
renal cancer and reducing the generation of ROS in renal cancer
cell lines, promoting apoptosis [154].

In turn, the diketopiperazines (▶ Fig. 9) obtained from SPSPA
strain BRA199 were assayed against HCT 116, OVCAR-8, and SF-
295, where cyclo(L‑Phe-L‑Pro), first isolated from Lactobacillus
plantarum, displayed moderate cytotoxicity to all cell lines. It is
worth to mention that diketopiperazines are ubiquitously synthe-
sized across living organisms. Although they are commonly iso-
lated from fungi, especially from the genera Aspergillus and Penicil-
lium [155], these compounds also occur in bacteria, plants, and
animals [156]. There are different chemical scaffolds described
for diketopiperazines; the most common one and that with fur-
ther therapeutic usefulness is the 2,5-diketopiperazine, a cyclodi-
peptide whose core structure has been often employed in drug
design to overcome poor pharmacokinetics proprieties of various
current active principles. Their anticancer potential may be illus-
trated by plinabulin, a synthetic analog of the marine fungal dike-
topiperazine halimide, isolated, in turn, by an Aspergillus sp. asso-
ciated with a Halimeda sp. algae, for which the mechanism of ac-
tion consists of promoting vascular disruption and tubulin-depoly-
merizing. Currently, plinabulin is undergoing the last stage of clin-
ical development for the treatment of NSCLC [157,158].

It is worth mentioning that much evidence has led natural
product researches to consider the associated microorganisms as
64 Wilke DV et al. A
the actual producers of cytotoxic compounds isolated from ma-
rine invertebrates. The growing indications–most of which are
generated by studies applying omics approaches–that this may
imply a majority of cases, even if only a few have been compel-
lingly confirmed, opens the way to vastly explore free-living mi-
croorganisms, such as those from sediments, in search of bioac-
tive molecules. In Brazil, although the marine microbiota have
been assessed for a much shorter time and suffer even more from
the lack of sufficient occurrence and taxonomic information, this
has shown to be a rapidly evolving field and a promising source of
pharmacologically relevant compounds.
Concluding Remarks and Perspectives
Within natural products science, it is common to associate inno-
vation with the discovery of original carbon skeletons with novel
biological properties. In this sense, the probability of finding new
chemical structures rises with the biodiversity of the studied sam-
ples and, additionally, the number of assays in the screening plat-
form [16,159]. One key factor to increase the natural product
chemical space is the prospection of novel taxonomical space,
which, in principle, would allot megadiverse countries like Brazil
an especially privileged position. However, translation of the pre-
dicted chemical diversity into isolated molecules amenable to bio-
logical assays is one of the biggest challenges in the process of
finding a new pharmacological hit. Pondering the results dis-
cussed in this review, it is clear that Brazilian taxonomical space
nticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All rights reserved.
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is still mostly unexplored, revealing–literally–an ocean of possibil-
ities to find new chemical entities.

One important issue in the discussion of sustainable use of ma-
rine biodiversity, either in Brazil or elsewhere, is the ownership of
the natural resources and the establishment of fair and equitable
sharing of resulting benefits, as predicted by the 1992 Convention
of Biological Diversity and the Nagoya Protocol from 2010 [160].
Although Brazil was one of the prompt signatories of the Nagoya
Protocol, it has not yet ratified the commitment. Still, Brazil is
among the countries with the most restrictive laws regulating
the access to genetic resources. Law number 13.123/2015 and
decree 8.772/2016 regulate basic and applied research with na-
tive organisms in Brazil and, in that scope, created a National Sys-
tem for Governance of Genetic Heritage and Associated Tradition-
al Knowledge (SisGen) [161]. In this context, it can be speculated
that such restrictive laws and subsequent bureaucracy to apply for
the necessary permits, aligned with incessant funding challenges,
may contribute to limiting the development of the field of marine
biotechnology in Brazil.

Still, this review reveals key contributions of Brazilian science to
anticancer research related to marine natural products, which en-
compasses studies on the mechanisms and targets of known
chemical scaffolds. While this can be a bit disappointing consider-
ing all the chemical diversity anticipated from the sizeable num-
ber of species distributed in our oceans, it represents an impor-
tant contribution to the field. Indeed, the scientific community is
aware that a huge gap remains in attributing ecological or bio-
medical properties to known natural products and, regardless of
structural novelty, understanding their bioactivities can bring in-
novative knowledge with impacts toward human health [16,
162]. One important example is the recent description of the
transcription factor TBX2 as a target of the chromomycins, which
are actually 70-y-old molecules that have undergone clinical trials
back in the 1960s [163]). However, at that time, this useful infor-
mation was not available to be used in the selection of patients,
which could have changed the outcome of those clinical trials.
Through COMPARE analysis of the respective outcomes on NCI-
60 cell line panel, the cytotoxic activity profiles of chromomycin
A3 and trabectedin revealed some similarities, which, in turn, is
suggestive of a common mechanism of action. In fact, trabecte-
din was the first compound able to displace an oncogenic tran-
scription factor from its target promoters with high specificity
[164,165].

Undoubtedly, the observed contributions have only been pos-
sible due to collaborative studies that address marine biodiversity
in the broadest sense. Currently, there are several networks run-
ning in Brazil combining diversified omics strategies and biologi-
cal assessments supporting the next steps and further consolidat-
ing Brazilian marine natural products investigations. Undeniably,
Brazilian science and innovation, conducted mostly by academics,
has never seen sufficient funding. Still, during the past 2 decades,
the country was benefiting from growing and significant improve-
ments on research infrastructure. Lately, however, a drastic reduc-
tion of already lesser funding has been threatening Brazilian sci-
ence and technology, assigning a vulnerable position to these only
recent gains and investments.
Wilke DV et al. Anticancer Potential of… Planta Med 2021; 87: 49–70 | © 2021. Thieme. All righ
In such a scenario, a drop in the number scientists is expected
to accompany the funding reduction, which should affect various
fields. Natural products research, in particular, which is inherently
tied to geography and to the national restrictive laws to assess
biodiversity, may endure yet another hardship. Nevertheless, Bra-
zilian science can still collect on well-developed human resources,
skilled in biological and pharmacological evaluations, in genomics
approaches and, moreover, in classical chemical techniques that
allow for isolation, purification, and structural determination of
organic molecules. These competencies will be evermore essen-
tial. In this sense, a measurable effect, at this moment, is the up-
surge in academic spinoff companies. This is a clear result of good
postgraduate training and evolution of technological maturity,
even if the product to be developed is not yet a new anticancer
drug.
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