Published online: 2020-07-21

& Thieme

Mapping Robust Genetic Variants Associated with Exercise

Responses

Authors

Javier Alvarez-Romero', Sarah Voisin', Nir Eynon'- 2, Danielle Hiam'®

Affiliations

1 Institute for Health and Sport, Victoria University,
Melbourne, Australia

2 MCRI, Murdoch Childrens Research Institute, Parkville,
Australia

Key words
trainability, aerobic exercise, exercise genetics, resistance
exercise, SNPs, genetic variants

accepted 01.06.2020

Bibliography

DOI https://doi.org/10.1055/a-1198-5496
Published online: 2020

Int ] Sports Med

© Georg Thieme Verlag KG Stuttgart - New York
ISSN 0172-4622

Correspondence

Dr. Nir Eynon

Institue of Sports Exercise and Active Living, Victoria
University

8001 Melbourne,

Australia

Tel.: +61 399195615, Fax: +61 399195615
Nir.Eynon@vu.edu.au

ABSTRACT

This review summarised robust and consistent genetic variants
associated with aerobic-related and resistance-related pheno-
types. In total we highlight 12 SNPs and 7 SNPs that are ro-
bustly associated with variance in aerobic-related and resist-
ance-related phenotypes respectively. To date, there is very
little literature ascribed to understanding the interplay be-
tween genes and environmental factors and the development
of physiological traits. We discuss future directions, including
large-scale exercise studies to elucidate the functional rele-
vance of the discovered genomic markers. This approach will
allow more rigour and reproducible research in the field of ex-
ercise genomics.

Introduction

Both aerobic and strength exercise training lower the incidence of
many chronic diseases via a number of mechanisms, including in-
creased skeletal muscle mitochondrial function [1], modulation of
the sympathetic nervous and immune systems, and optimization
of the neuroendocrine system [2]. These mechanisms act as buff-
ers against chronic diseases, minimizing inflammatory state, and
enhancing neuroplasticity and growth factor expression [3]. How-
ever, large inter-individual differences exist in the physiological re-
sponses to any given exercise training (also called “trainability”)
[4,5], and recently new statistical methods have been developed
to properly isolate individual responses from random error [6].
Large trainability has been observed in many physical fitness pa-
rameters [7], including maximal oxygen uptake (VO,max) [8, 9],
resting heart rate [9], exercise heart rate [9], aerobic threshold [10],
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anaerobic threshold [9], resting muscle glycogen content, muscle
enzyme activity [11], as well as muscle mass and strength [12, 13].

The heritable component of trainability is large, with genetics
explaining 47 % of the variance in VO, peak trainability, and around
52 % in resistance variability [14]. The contribution of familial fac-
tors (genetics and environment) to trainability was demonstrated
in the seminal HERITAGE family study [15]. This study indicated that
VO,max was more variable between families than within families
atbaseline [16], and in response to exercise training [17], thus sug-
gesting that DNA sequence variations could modulate exercise re-
sponses [4, 18]. Pinpointing the responsible gene variants could il-
luminate the fundamental mechanisms driving this heterogeneity
in response to exercise training [18].

The genetic contribution to trainability has been investigated
by two different approaches: candidate genes and genome-wide
association (GWAS) study. The GWAS approach involves scanning
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several hundred thousand (currently up to 5 million) DNA markers
across the human genome to find genetic variations associated
with a particular trait. One of the advantages of the GWAS approach
is that it is unbiased and hypothesis-free. In contrast, candidate
gene studies require knowledge of the trait of interest and is par-
ticularly useful to validate the functional impact of gene loci such
as those identified by GWAS [19]. GWAS have demonstrated that
trainability is polygenic (i. e., influenced by many genetic variants),
and that people harbouring the same genotypes in specific gene
variants respond more similarly to exercise training than people
harbouring different genotypes [20-23]. These variants may mod-
ulate gene expression that is essential to the molecular adaptation
to exercise training, since molecular processes mediate metabo-
lism, angiogenesis, cardiac and skeletal myofibre hypertrophy, and
other processes that lead to better fitness [24].

While many SNPs have been associated with exercise response
and trainability. The vast majority of the genes previously identi-
fied have not been replicated [25]. Replication in an independent
cohort is important as it increases the likelihood that results are
true and reduces the number of false positives [26, 27]. In this re-
view we summarised SNPs associated with both resistance and aer-
obic trainability and have been replicated in two independent co-
horts. In addition, we have screened these SNPs with the goal of
identifying SNPs at trainability-associated loci that may have func-
tional relevance. Further, we discussed future directions of per-
forming large-scale exercise studies to elucidate the functional rel-
evance of the discovered genomic markers. This approach will allow
more rigour and reproducible research in the field of exercise
genomics.

Materials and Methods

To provide a robust and comprehensive narrative review, a semi-
structured search was performed (July 2019) to identify all studies
relating to genetic variants and exercise trainability. Three elec-
tronic databases (PUBMED, MEDLINE and SCOPUS) were used to

» o«

identify relevant articles using the following keywords “genes”, “ge-

» o« » o«

nome”, “exercise”,

» o« » o«

physical activity”, “aerobic capacity”, “resist-
ance”, “strength”, “power”. We excluded studies where the sole
focus was on populations with a diagnosed medical condition such
type 2 diabetes mellitus, any inflammatory conditions, and cardio-
vascular disease. Articles were separated in two categories: genet-
ic variants associated with either aerobic or resistance trainability
(» Tables 1 and » 2). This review was conducted in accordance with
the I|SM’s ethical standards of the journal [28]

Finally, we selected SNPs that were classified as robust and sep-
arated them according to whether they were related to the aerobic
trainability or resistance trainability. We chose this criteria as it re-
flects the reliability of the findings and increases the likelihood that
there is true association of the SNP with trainability [27]. It also al-
lows us to identify and summarise SNPs with biological relevance
which is useful for researchers to ‘select’ candidate SNPs to iden-
tify causality and purpose of gene [29].

SNPs were considered robust if:

1) Consistent association with a given phenotype in at least
two independent cohorts.

2) SNPs were shown to have functional relevance in an animal
model or cell culture, with gene expression/DNA methylation
Quantitative Trait Loci (QTLs) analysis or network, and enrich-
ment analysis.

Aerobic Trainability

Twin and family studies indicate that ~22-57 % of aerobic fitness
variability between individuals can be explained by genetics and
therefore plays an important role in the range of aerobic pheno-
types observed in a population [30]. Here, we briefly describe some
of the robust SNPs that have been associated with aerobic traina-
bility, which means they were replicated in at least 2 independent
cohorts and were shown to have functional relevance.

A bioinformatic analysis study conducted by Ghosh et al. found
that the greatest number of SNPs were annotated to the PPAR sig-
nalling pathway suggesting its importance in VO, trainability
[31]. As such the most widely studied genes within this pathway
are the peroxisome proliferator-activated receptors (PPARA, PPARG,
and PPARD) and their transcriptional coactivators (PPARGC1A and
PPARGCT1B). These genes have been linked to multiple aerobic phe-
notypes, including muscle morphology, aerobic capacity and en-
durance performance [32,33]. PPARD is expressed predominantly
in adipocytes and skeletal muscle where it promotes fatty acid ox-
idation [34]. In the HERITAGE family study, the rs2016520 SNP (C
allele) located in PPARD was associated with reduced VO, and
maximal power output after a 20 week endurance training inter-
vention in African-Americans but not in Caucasians [35]. In vitro
and animal studies show that the minor allele (C allele) in this SNP
(rs2016520) results in higher PPARD transcriptional activity, which
in turn promotes lipid accumulation and the alters normal requla-
tion of lipid uptake and storage [34, 36, 37]. In a European cohort
it was shown that the PPARD rs2267668 SNP was associated with
VO;peak and anaerobic threshold after a 9-month lifestyle interven-
tion [38]. They then confirmed thatin human primary cell lines that
those carrying the minor allele at rs2267668 (G allele) were asso-
ciated with lower mitochondrial activity, demonstrating a poten-
tial functional effect [38]. Taken together, PPARD locus may play a
role in aerobic trainability, but larger cohorts of different ancestries
and, more in depth functional studies to determine causal SNP are
needed to confirm this.

The transcriptional co-activator PPARGC1A interacts with PPARD
and requlates mitochondrial biogenesis, angiogenesis, lipolysis and
adipogenesis [39]. Four candidate gene studies, predominantly in
men, found consistent associations of rs8192678 within PPARGCTA
and aerobic capacity in Europeans [38,40-42]. While in the Han
Chinese cohort another nearby SNP (rs6821591) was associated
with VO, . specifically, the G allele was associated with increased
VO,max compared to those carrying the A allele [43]. Work conduct-
ed in a Han Chinese cohort found that the PPARGCTA rs6821591
SNP had functional significance as gene expression was altered and
this was dependent on genotype (A v G allele) with the G allele dis-
playing increased PGC-1a gene expression [44]. Overexpression of
PGC-1ain an animal model showed increased Type 1 fibres in mus-
cles that are normally Type Il fibre type dense and this induced in-
creases in resistance to fatigue, inferring increased aerobic capac-
ity [45]. These population-specific results indicate that it is the
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PPARGC1A locus itself, rather than individual SNPs located within
that locus, may be important for trainability [43, 46].

Currently 26 SNPs associated with VO, trainability were iden-
tified in a GWAS and were validated in 2 separate cohorts (detailed
in » Table 2) [23]. They accounted for 49 % of VO, ., trainability
and were able to classify responders and non-responders [23,47].
Whether these SNPs are directly involved in gene function or reg-
ulation of genes is the next step to validate these findings. The most
robust is the SNP rs6552828 located near the ACSL1 gene which
was the strongest predictor (~6 %) of aerobic trainability (VO5max)
[23]. It has subsequently been validated in a bioinformatics path-
way analysis and found to be strongly correlated to the aerobic elec-
tron transport chain phenotype and the PPAR signalling pathway
providing a robust candidate gene in VO, trainability [31]. ACSL1
regulates lipid metabolism by facilitating the transport of long
chain fatty acids into the mitochondria and is an essential step in
fatty acid oxidation [48]. Timmons et al. integrated RNA profiles
with genetic variants and found the following genes CD44, and
DAAM]1, also discovered in the Bouchard et al. GWAS, were associ-
ated with gene expression changes [49]. Gene expression of CD44
was up-regulated in response to endurance training [49] and was
strongly associated with phenotypic terms associated with aerobic
exercise such as: cardiovascular physiological processes, muscle
contraction, physical fitness and aerobic electron transport chain
[31] indicating that this gene and any alterations to its function
(i. e. via SNPs) may play in important role in aerobic trainability.
While these genes certainly provide robust genes, there are still
limitations in determining the causality of these particular SNPs in
the molecular mechanisms affecting aerobic trainability.

Many candidate gene and GWAS studies have been conducted
and this review highlights the large collection of candidate genes
that have been associated with aerobic trainability. Only 12 SNPs
have been robustly associated with aerobic trainability (> Table 3)
meaning that have been validated in at least 2 independent cohorts
and were shown to have some functional relevance. Subsequent
studies should focus on understanding the functional role of the
SNPs that have been replicated as this review highlights the lack of

> Table 3 Robust SNPs associated with aerobic or resistance trainability.

understanding of the molecular mechanism and limits our under-
standing of aerobic trainability.

Resistance Trainability

Muscular strength and power show a heritability estimated around
52 % [14]. Skeletal muscle strength is defined as the force produced
by muscle contraction. A variety of measures have been investigat-
ed, including muscle strength, maximal voluntary contraction
(MVC), 1 repetition maximum (1RM) and handgrip strength. While
the production of skeletal muscle power is defined as how much
force can be produced and the velocity at which it is produced. The
production of power can be measured at the by undertaking tests
such as Wingate’s, counter movement jumps (CM]) and vertical
jumps (V]).

The ACE I/D and ACTN3 R/X SNPs are two of the most extensive-
ly studied gene loci. We have chosen not to discuss ACTN3 here as
it has recently been reviewed in detail by Del Coso et al. [50] and
instead focus on the ACE I/D SNP. The ACE gene encodes the angi-
otensin-converting enzyme that is a central component of the re-
nin-angiotensin-system [51]. The ACEI/D results in either an inser-
tion (1) or deletion (D) of a 287-basepair region in intron 16 of the
gene [52] and can alter the levels of ACE in the blood [52]. It has
recently been shown that the polymorphism can manipulate the
activity of the C- and N-terminal domain in the enzyme [53]. Fur-
ther, exercise can decrease the enzyme activity in the C-terminal
domain and increase the activity in the N- terminal domain which
results in improved blood flow and proliferation of red blood cells
[53]. Itis thought that the | allele confers enhanced endurance per-
formance while the D allele is thought to confer increased muscle
power and strength [54]. The D allele was consistently shown across
6 separate candidate gene studies to be associated with greater
gains in strength after resistance training and this was consistent
across sex and age [55-60]. While the literature is consistent re-
garding muscular strength, the association with muscular power is
less convincing [55,61-63]. The D allele in ACE was associated with
CM] in older females after a 12-week power training program [58]
and in young males after a high intensity training program [13].
However, it was the | allele in ACE that was associated with a higher

Aerobic trainability Resistance trainability

SNP Nearest gene Beneficial allele SNP Nearest gene Beneficial allele
rs6552828 ACSL1 G rs4646994 * ACE D
rs699 AGT T rs1799752 * ACE D
rs6090314 BIRC A rs4340 * ACE D
rs12580476 C12orf36 TBC rs13447447 * ACE D
rs884736 CAMTA1 G rs1815739 ACTN3 R
rs353625 CD44 TBC rs2296135 IL15RA C
rs1956197 DAAM1 G rs4253778 PPARA c
rs17117533 NDN

rs8192678 PPARGCTA G

rs10921078 RCS18

rs7531957 RYR2 TBC

rs11715829 ZIC4 G

TBC, Allele to be confirmed; *Linkage Disequilibrium above 80 % according to ensemble LD calculator.
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baseline V] at baseline in males and females [62]. Another two stud-
ies did not find any association between the ACE I/D and skeletal
muscle power at baseline or in response to resistance training
[61,63]. ACE provides a robust candidate gene for explaining vari-
ation in muscular strength but not muscular power suggesting that
this gene loci may only explain some of the inter-individual resist-
ance variability dependent on type of resistance exercise.

Many of the candidate genes in resistance trainability came from
alarge multi-centre trial (FAMuSS) which aimed to identify nonsyn-
onymous SNPs with functional effects on muscle power and
strength [64]. These include: Glucocorticoid receptor (NR3C1)[65],
alpha-actinin 3 (ACTN3)[66], Chemokine (C-C motif) ligand 2
(CCL2)[67], Chemokine (C-C motif) ligand 2 Receptor (CCR2)[67],
ACE[60], Solute carrier family 30 (zinc transporter), member eight gene
(SLC30A8)[68], Leptin (LEP) and Leptin receptor (LEPR)[69]. The FA-
MusSS study was conducted in young (18-40 years old) males
(N=247) and females (N=355) of predominantly European-Amer-
ican ancestry. Participants underwent a 12-week unilateral resist-
ance program consisting of upper arm exercises in the non-domi-
nantarm [60]. Only IL-15RA, ACTN3 and ACE from this series of stud-
ies were replicated in separate cohorts and have functional
relevance. In the IL-15RA locus the rs2296135 SNP was associated
gains in muscular strength and replicated in two different studies
in cohort of European ancestry [70,71]. When the gene IL-15RA is
knocked down in an animal model it altered the contractile prop-
erties and fatigability in skeletal muscle fibres [72]. While the locus
is important it not yet clear which SNPs is responsible for altering
the function of IL-15RA protein. Although SNPs within CCL2, CCR2
and CNTF have not been replicated they interestingly showed sex-
specific associations with muscle strength. CTNF polymorphisms
were associated with strength gains only in females [73], which was
subsequently confirmed in a South Korean cohort [74]. SNPs in CCL2
and CCR2 were associated strength gains in males only [67]. This
indicates potential sex-specific differences in the genetic architec-
ture of complex traits and should be incorporated into study de-
sign [75, 76]. In addition PTK2, CNTF, IL-6, PPARA and VDR candi-
date genes have been replicated with functional relevance [13, 73].

In total 7 SNPs (> Table 3) were robustly associated with resist-
ance variability. While there are plethora of candidate gene stud-
ies no GWAS have been conducted that specifically focuses on re-
sistance trainability.

Functional Validation

We have identified 12 SNPs and 7 SNPs that are robustly associat-
ed with variance in aerobic and resistance trainability respectively.
The next steps are to a) identify the causal SNP, b) annotate the
casual SNP to the correct gene and then c) to establish the func-
tional relevance of the gene [47]. The overall evidence from litera-
ture connecting causal genes to trainability is relatively low [31]. If
we hope to identify the casual variants or genes it is vital that we
begin to integrate “omic” technologies from the genome and epi-
genome to transcriptome to proteome and metabolome which can
capture a complete picture of complex human traits such as aero-
bic and resistance trainability [77, 78].

There have been attempts to associate molecular pathways or
“molecular phenotypes” with physiological phenotypes of aerobic

and resistance trainability [79-81]. Sarzynski et al. applied this sys-
tems biology approach by combining the 21 SNP identified in a
GWAS from the HERITAGE study cohort (> Table 2) [15, 23] and ex-
amined the joint contributions of these SNPs to exercise response
[47]. This approach identified potential pathways in calcium sig-
nalling, energy sensing and partitioning, mitochondrial biogene-
sis, angiogenesis, immune functions, and requlation of autophagy
and apoptosis, providing important pathways that can be investi-
gated more closely [47]. Another integrative approach is expres-
sion quantitative trait loci (eQTLs) analysis that leverages gene loci
identified from GWAS and integrate these with gene expression
data to identify differential gene expression levels to try and un-
cover the ‘molecular phenotype’ that lead to these variations in ex-
ercise response [82, 83]. Willems et al. identified the rs6565586
SNP in ACTG1 as a strong candidate gene in inter-individual varia-
bility in the resistance-related phenotype (hand grip strength) and
correlated this with a lower expression of mMRNA in skeletal muscle.
ACTGT encodes Actin Gamma 1 and is involved in the structure and
function of skeletal muscle fibres. Interestingly, in a knock out
mouse model, animals displayed overt muscle weakness [84]. This
type of analysis presented an ideal candidate gene to begin under-
standing the molecular mechanisms in human skeletal muscle.

To establish causality of genetic variants in aerobic and resist-
ance trainability the field needs to move forward beyond associa-
tion analysis. The type of follow-up experiment will depend on the
location of SNP within the gene. For SNPs within coding regions
ideally experiments are performed to study the effect of the SNP
has on protein structure and function. For SNPs within in non-cod-
ing regions it more difficult to determine as they may not directly
affect a gene but alter[regulate transcription factors and mediate
alterations in genes this way [77]. However, with the introduction
of the large epigenetic database ENCODE (Encyclopaedia of DNA
elements) we can now identify the transcription factor association,
chromatin structure and histone modification of target genes [85]
and more recently enhancers providing candidate gene targets for
follow up analysis [86]. With the discovery of CRISPR Cas-9 ge-
nome-editing tool in 2012 [87], this has paved the way for estab-
lishing causality of SNPs and the functional effects of them. This
has been used to great effect for establishing causal genes impli-
cated in insulin resistance whereby they were able to determine
the casual effect of 12 candidate genes that had previously been
identified in a GWAS [88]. To date no experiments have been con-
ducted using this gene-editing tool to establish the function and
causality of candidate genes of trainability beyond association anal-
ysis.

There s still much work to do before personalised exercise pre-
scription (both in a clinical and elite athlete setting) can be based
on an individual’s genetics. However, there are concerted efforts
taking place to make this possible such as the Athlome Project Con-
sortium and the Gene SMART (Skeletal Muscle Response to Train-
ing), recently launched with the aim of uncovering the genetic var-
iation underlying athletic performance, adaptation to exercise
training, and exercise-related musculoskeletal injuries [89, 90].
These, and other initiatives will allow for population-based ap-
proach to understand the role of genes and environmental factors
contributing to the complex exercise response phenotype [91].
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This review summarised robust genetic variants that have been
associated with aerobic and resistance trainability. To date, there
is very little literature ascribed to understanding the interplay be-
tween genes and environmental factors and the development of

phys
alva
bica

iological traits. Therefore, much work remains to identify caus-
riants and functional relevance of genes associated with aero-
nd resistance trainability.
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