Ultraschall Med 2022; 43(04): 393-402
DOI: 10.1055/a-1194-3818
Original Article

The Imaging Performance of Diagnostic Ultrasound Scanners Using the Edinburgh Pipe Phantom to Measure the Resolution Integral – 15 Years of Experience

Die Bildgebungsleistung von diagnostischen Ultraschallscannern unter Verwendung des Edinburgh Pipe Phantom zur Messung des Auflösungsintegrals – 15 Jahre Erfahrung
Carmel M. Moran
1   University-BHF Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom of Great Britain and Northern Ireland
,
Scott Inglis
2   Medical Physics, NHS Lothian, Edinburgh, United Kingdom of Great Britain and Northern Ireland
,
Karne McBride
2   Medical Physics, NHS Lothian, Edinburgh, United Kingdom of Great Britain and Northern Ireland
,
Christopher Mcleod
2   Medical Physics, NHS Lothian, Edinburgh, United Kingdom of Great Britain and Northern Ireland
,
Stephen D. Pye
2   Medical Physics, NHS Lothian, Edinburgh, United Kingdom of Great Britain and Northern Ireland
› Author Affiliations

Abstract

The grayscale imaging performance of a total of 368 different scanner/transducer combinations from 39 scanner manufacturers measured over a period of 15 years is presented. Performance was measured using the resolution integral, a single figure-of-merit to quantify ultrasound imaging performance. The resolution integral was measured using the Edinburgh Pipe Phantom. Transducers included single element, linear, phased, curvilinear and multi-row arrays. Our results demonstrate that the resolution integral clearly differentiates between transducers with varying levels of performance. Two further parameters were also derived from the resolution integral: characteristic resolution and depth of field. We demonstrate that these two parameters can successfully characterize individual transducer performance and differentiate between transducers designed for different clinical and preclinical applications. In conclusion, the resolution integral is an effective metric to quantify and monitor grayscale imaging performance in clinical practice.

Zusammenfassung

Die über einen Zeitraum von 15 Jahren gemessene Graustufen-Bildgebungsleistung von insgesamt 368 verschiedenen Scanner/Wandler-Kombinationen von 39 Herstellern wird vorgestellt. Die Leistung wurde unter Verwendung des Auflösungsintegrals gemessen, einer einzigen Gütezahl zur Quantifizierung der Ultraschall-Bildgebungsleistung. Das Auflösungsintegral wurde mit dem Edinburgh Pipe Phantom gemessen. Die Schallköpfe umfassten sowohl Einzelelement-, Linear-, Phased-, Curvilinear- und Multirow-Arrays. Unsere Ergebnisse zeigen, dass das Auflösungsintegral eindeutig zwischen Schallköpfen mit unterschiedlichen Leistungsniveaus unterscheidet. Zwei weitere Parameter wurden ebenfalls aus dem Auflösungsintegral abgeleitet: Die charakteristische Auflösung und die Tiefenschärfe. Wir zeigen, dass diese beiden Parameter die Leistung einzelner Schallköpfe erfolgreich charakterisieren und zwischen Schallköpfen unterscheiden können, die für unterschiedliche klinische und präklinische Anwendungen entwickelt wurden. Zusammenfassend lässt sich sagen, dass das Auflösungsintegral eine effektive Metrik zur Quantifizierung und Überwachung der Graustufen-Bildgebungsleistung in der klinischen Praxis ist.



Publication History

Received: 29 September 2019

Accepted: 28 May 2020

Article published online:
26 June 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Madson EL. Quality assurance for grey-scale imaging. Ultrasound Med Biol 2000; 26 (Suppl. 01) S48-S50
  • 2 Thijssen JM, Weijers G, de Korte CL. Objective performance testing and quality assurance of medical ultrasound equipment. Ultrasound Med Biol 2007; 33: 460-471
  • 3 International Electrotechnical Commision (IEC). Ultrasonics real-time pulse-echo systems – guide for test procedures to determine performance specifications. Publication 1390 (Geneva: International Electrotechnical Commission) 1996
  • 4 International Electrotechnical Commision (IEC). Ultrasonics pulse-echo scanners – part 1: techniques for calibrating spatial measurement systems and meaurement of system point-spread function response. Publication 61391-1 (Geneva: International Electrotechnical Commission) 2006
  • 5 Dudley N, Russell S, Ward B. et al. Guest Editorial: BMUS guidelines for regular quality assurance testing of ultrasound scanners. Ultrasound 2014; 22: 6-7
  • 6 Dudley N, Russell S, Ward B. et al. BMUS guidelines for regular quality assurance testing of ultrasound scanners by sonographers. Ultrasound 2014; 22: 8-14
  • 7 Dall B, Dudley N, Hanson M. Guidance notes for the acquisition and testing of ultrasound scanners for use in the NHS breast screening programme. NHS Breast Screening Programme publication No 70. Sheffield: NHS Cancer Screening Programmes; 2011
  • 8 Shaw A, Hekkenberg R. Standards to support performance evaluation for diagnostic ultrasound imaging equipment. 2007: NPL Report AC 2. UK National Physical Laboratory London.
  • 9 Pye SD, Ellis W. 2004 UK Patent GB2396213.
  • 10 MacGillivray TJ, Ellis W, Pye SD. The resolution integral: visual and computational approaches to characterising ultrasound images. Phys Med Biol 2010; 55: 5067-5088
  • 11 Inglis S, Janeczko A, Ellis W. et al. Assessing the imaging capabilities of radial mechanical and electronic echo-endoscopes using the resolution integral. Ultrasound Med Biol 2014; 40: 1896-1907
  • 12 Mcleod C, Moran CM, McBride KA. et al. Evaluation of intravascular ultrasound catheter based transducers. Ultrasound Med Biol 2018; 44: 2802-2812
  • 13 Moran CM, Pye SD, Ellis B. et al. A comparison of the imaging performance of high resolution ultrasound scanners for preclinical imaging. Ultrasound Med Biol 2011; 37: 493-501
  • 14 Moran CM, Ellis W, Janeczko A. et al. The Edinburgh Pipe Phantom: characterising ultrasound scanners beyond 50 MHz. J Physics Conf Series 2011; 279: 012008
  • 15 Filoux E, Mamou J, Moran CM. et al. Characterization of the effective performance of a high-frequency annular-array-based imaging system using anechoic-pipe phantoms. IEEE Trans UFFC 2012; 59: 2825-2830
  • 16 Welsh D, Inglis S, Pye SD. Detecting failed elements on phased array ultrasound transducers using the Edinburgh Pipe Phantom. Ultrasound 2016; 24: 68-73
  • 17 Rowland DE, Newey VR, Turner DP. et al. The automated assessment of ultrasound scanner lateral and slice thickness resolution: use of the step response. Ultrasound Med Biol 2009; 35: 1525-1534
  • 18 Joy J, Rieldel F, Valente AA. et al. Automated performance assessment of ultrasound systems using a dynamic phantom. Ultrasound 2014; 22: 199-204
  • 19 Pye SD, Ellis W. The resolution integral as a metric of performance for diagnostic grey-scale imaging. J Physics Conf Series 2011; 279: 012009
  • 20 Wang S, Herbst E, Pye SD. et al. Phantoms with applications in molecular imaging and system characterization. Trans Ultras Ferro Freq Cont (TUFFC) 2016; 64: 39-52
  • 21 Ramnarine KV, Anderson T, Hoskins PR. Construction and geometric stability of physiological flow rate wall-less stenosis phantoms. Ultrasound Med Biol 2001; 27: 245-250
  • 22 International Electrotechnical Commision (IEC). IEC 61685: International Standard. Ultrasonics – Flow measurement systems – Flow test object 2001.
  • 23 Inglis S, Ramnarine KV, Plevris JN. et al. An anthropomorphic tissue-mimicking phantom of the oesophagus for endoscopic ultrasound. Ultrasound Med Biol 2006; 32: 249-259
  • 24 Zeqiri B, Cook A, Retat L. et al. On measurement of the acoustic nonlinearity parameter using the finite amplitude insertion substitution (FAIS) technique. Metrologia 2015; 52: 406-422
  • 25 Sun C, Pye SD, Browne JE. et al. The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications. Ultrasound Med Biol 2012; 38: 1262-1270
  • 26 Pye SD, Ellis W, MacGillivray TJ. Medical ultrasound: a new metric of performance for grey-scale imaging. J Physics Conf Series 2004; 1: 187-192
  • 27 Moran CM, Inglis S, Pye SD. The resolution integral – a tool for characterising the performance of diagnostic ultrasound scanners. Ultrasound 2014; 22: 37-43
  • 28 Weigang B, Moore GW, Gessert J. et al. The methods and effects of transducer degradation on image quality and the clinical efficacy of diagnostic sonography. J Diagn Med Sonogr 2003; 19: 3-13
  • 29 Goldstein A, Ranney D, McLeary RD. Linear array test tool. J Ultrasound Med 1989; 8: 385-397
  • 30 Dudley NJ, Woolley DJ. A simple uniformity test for ultrasound phased array. Physica Medica 2016; 32: 1162-1166