Dialyse aktuell 2020; 24(09): 360-366
DOI: 10.1055/a-1190-8056
Schwerpunkt
Nephrologie

Der Einfluss der Mikrobiota auf den Blutdruck

Wie Darmbakterien Bluthochdruck und Organschäden beeinflussen
Nicola Wilck
1   Experimental and Clinical Research Center, eine Kooperation von Charité – Universitätsmedizin Berlin und Max-Delbrück-Centrum für Molekulare Medizin, Berlin
2   Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Berlin
3   DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), Partner Site Berlin, Berlin
4   Berlin Institute of Health (BIH), Berlin
5   Medizinische Klinik mit Schwerpunkt Nephrologie und Internistische Intensivmedizin, Charité – Universitätsmedizin Berlin, Berlin
› Author Affiliations

ZUSAMMENFASSUNG

Den Einfluss der Mikrobiota auf Gesundheit und Krankheit besser zu verstehen, ist eine große Herausforderung für die Forschung. Darmbakterien können die Blutdruckregulation beeinflussen und die Entstehung von Bluthochdruck begünstigen. Dabei ist zum einen eine aberrante Zusammensetzung der Bakterien relevant, zum anderen sind veränderte Funktionen der bakteriellen Gemeinschaft ausschlaggebend. Eine Schlüsselfunktion nehmen von Bakterien produzierte Metabolite ein, die vom Wirt resorbiert werden und Einfluss auf Gefäßfunktion, immunologische Prozesse und Endorganschäden nehmen können. Da Bakterien diese Metabolite aus N 11907967 ährstoffen herstellen, wird einmal mehr die zentrale Rolle der Ernährung klar. Ballaststoff- und Salzgehalt der Nahrung sollen in diesem Artikel beispielhaft aufzeigen, wie Nährstoffe über bakteriell vermittelte Mechanismen den Blutdruck beeinflussen können. Zukünftig könnte die gezielte Nutzung der Mikrobiota die Therapie von Patienten mit Bluthochdruck verbessern.



Publication History

Article published online:
12 November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 2016; 14: e1002533 doi:10.1371/journal.pbio.1002533
  • 2 Ley RE, Turnbaugh PJ, Klein S. et al Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022-1023 doi:10.1038/4441022a
  • 3 Qin J, Li Y, Cai Z. et al A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60 doi:10.1038/nature11450
  • 4 Karlsson FH, Fak F, Nookaew I. et al Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012; 3: 1245 doi:10.1038/ncomms2266
  • 5 Cui X, Ye L, Li J. et al Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 2018; 8: 635 doi:10.1038/s41598-017-18756-2
  • 6 Vaziri ND, Wong J, Pahl M. et al Chronic kidney disease alters intestinal microbial flora. Kidney Int 2013; 83: 308-315 doi:10.1038/ki.2012.345
  • 7 Yan Q, Gu Y, Li X. et al Alterations of the Gut Microbiome in Hypertension. Front Cell Infect Microbiol 2017; 7: 381 doi:10.3389/fcimb.2017.00381
  • 8 Santisteban MM, Qi Y, Zubcevic J. et al Hypertension-Linked Pathophysiological Alterations in the Gut. Circ Res 2016 DOI: doi:10.1161/CIRCRESAHA.116.309006
  • 9 Vaziri ND, Yuan J, Rahimi A. et al Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol Dial Transplant 2012; 27: 2686-2693 doi:10.1093/ndt/gfr624
  • 10 Skelly AN, Sato Y, Kearney S. et al Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 2019; 19: 305-323 doi:10.1038/s41577-019-0144-5
  • 11 Cummings JH, Pomare EW, Branch WJ. et al Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28: 1221-1227 doi:10.1136/gut.28.10.1221
  • 12 Schlamowitz P, Halberg T, Warnoe O. et al Treatment of mild to moderate hypertension with dietary fibre. Lancet 1987; 2: 622-623 doi:10.1016/s0140-6736(87)93007-8
  • 13 Whelton SP, Hyre AD, Pedersen B. et al Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trials. J Hypertens 2005; 23: 475-481 doi:10.1097/01.hjh.0000160199.51158.cf
  • 14 Hartley L, May MD, Loveman E. et al Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2016; 2016: CD011472 doi:10.1002/14651858.CD011472.pub2
  • 15 Yang T, Santisteban MM, Rodriguez V. et al Gut dysbiosis is linked to hypertension. Hypertension 2015; 65: 1331-1340 doi:10.1161/HYPERTENSIONAHA.115.05315
  • 16 Unger T, Borghi C, Charchar F. et al 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020; 75: 1334-1357 doi:10.1161/HYPERTENSIONAHA.120.15026
  • 17 Whelton PK, Carey RM, Aronow WS. et al 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018; 71: e127-e248 doi:10.1016/j.jacc.2017.11.006
  • 18 Williams B, Mancia G, Spiering W. et al 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021-3104 doi:10.1093/eurheartj/ehy339
  • 19 Husted AS, Trauelsen M, Rudenko O. et al GPCR-Mediated Signaling of Metabolites. Cell Metab 2017; 25: 777-796 doi:10.1016/j.cmet.2017.03.008
  • 20 Brown AJ, Goldsworthy SM, Barnes AA. et al The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278: 11312-11319 doi:10.1074/jbc.M211609200
  • 21 Bindels LB, Dewulf EM, Delzenne NM. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 2013; 34: 226-232 doi:10.1016/j.tips.2013.02.002
  • 22 Pluznick JL, Protzko RJ, Gevorgyan H. et al Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 2013; 110: 4410-4415 doi:10.1073/pnas.1215927110
  • 23 Natarajan N, Hori D, Flavahan S. et al Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics 2016; 48: 826-834 doi:10.1152/physiolgenomics.00089.2016
  • 24 Bartolomaeus H, Balogh A, Yakoub M. et al Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation 2019; 139: 1407-1421 doi:10.1161/CIRCULATIONAHA.118.036652
  • 25 Marques FZ, Nelson E, Chu PY. et al High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation 2017; 135: 964-977 doi:10.1161/CIRCULATIONAHA.116.024545
  • 26 Henrich WL. Hemodynamic instability during hemodialysis. Kidney Int 1986; 30: 605-612 doi:10.1038/ki.1986.228
  • 27 Yeo SK, Ooi LG, Lim TJ. et al Antihypertensive properties of plant-based prebiotics. Int J Mol Sci 2009; 10: 3517-3530 doi:10.3390/ijms10083517
  • 28 He J, Streiffer RH, Muntner P. et al Effect of dietary fiber intake on blood pressure: a randomized, double-blind, placebo-controlled trial. J Hypertens 2004; 22: 73-80 doi:10.1097/00004872-200401000-00015
  • 29 Khalesi S, Sun J, Buys N. et al Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 2014; 64: 897-903 doi:10.1161/HYPERTENSIONAHA.114.03469
  • 30 Bartolomaeus H, Avery EG, Bartolomaeus TUP. et al Blood Pressure Changes Correlate with Short-Chain Fatty Acids Production Shifts Under a Synbiotic Intervention. Cardiovascu Res 2020; 116: 1252-1253 doi:10.1093/cvr/cvaa083
  • 31 Solak Y, Afsar B, Vaziri ND. et al Hypertension as an autoimmune and inflammatory disease. Hypertension Res 2016; 39: 567-573 doi:10.1038/hr.2016.35
  • 32 Shagdarsuren E, Wellner M, Braesen JH. et al Complement activation in angiotensin II-induced organ damage. Circ Res 2005; 97: 716-724 doi:10.1161/01.RES.0000182677.89816.38
  • 33 Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med 2018; 215: 21-33 doi:10.1084/jem.20171773
  • 34 Itani HA, McMaster Jr WG, Saleh MA. et al Activation of Human T Cells in Hypertension: Studies of Humanized Mice and Hypertensive Humans. Hypertension 2016; 68: 123-132 doi:10.1161/HYPERTENSIONAHA.116.07237
  • 35 Youn JC, Yu HT, Lim BJ. et al Immunosenescent CD8 + T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension 2013; 62: 126-133 doi:10.1161/HYPERTENSIONAHA.113.00689
  • 36 Madhur MS, Lob HE, McCann LA. et al Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 2010; 55: 500-507 doi:10.1161/HYPERTENSIONAHA.109.145094
  • 37 Amador CA, Barrientos V, Pena J. et al Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension 2014; 63: 797-803 doi:10.1161/HYPERTENSIONAHA.113.02883
  • 38 Katsuki M, Hirooka Y, Kishi T, Sunagawa K. Decreased proportion of Foxp3 + CD4 + regulatory T cells contributes to the development of hypertension in genetically hypertensive rats. J Hypertens 2015; 33: 773-783 discussion 783. doi:10.1097/HJH.0000000000000469
  • 39 Wen Y, Crowley SD. Renal Effects of Cytokines in Hypertension. Adv Exp Med Biol 2019; 1165: 443-454 doi:10.1007/978-981-13-8871-2_21
  • 40 Chang PV, Hao L, Offermanns S. et al The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 2014; 111: 2247-2252 doi:10.1073/pnas.1322269111
  • 41 Arpaia N, Campbell C, Fan X. et al Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451-455 doi:10.1038/nature12726
  • 42 Smith PM, Howitt MR, Panikov N. et al The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569-573 doi:10.1126/science.1241165
  • 43 Furusawa Y, Obata Y, Fukuda S. et al Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446-450 doi:10.1038/nature12721
  • 44 Kvakan H, Kleinewietfeld M, Qadri F. et al Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation 2009; 119: 2904-2912 doi:10.1161/CIRCULATIONAHA.108.832782
  • 45 Duscha A, Gisevius B, Hirschberg S. et al Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell 2020; 180: 1067-1080 e1016 doi:10.1016/j.cell.2020.02.035
  • 46 Coutzac C, Jouniaux JM, Paci A. et al Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nature Comm 2020; 11: 2168 doi:10.1038/s41467-020-16079-x
  • 47 Rothschild D, Weissbrod O, Barkan E. et al Environment dominates over host genetics in shaping human gut microbiota. Nature 2018; 555: 210-215 doi:10.1038/nature25973
  • 48 David LA, Maurice CF, Carmody RN. et al Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559-563 doi:10.1038/nature12820
  • 49 GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 393: 1958-1972 DOI: doi:10.1016/S0140-6736(19)30041-8.
  • 50 Jones DW, Luft FC, Whelton PK. et al Can We End the Salt Wars With a Randomized Clinical Trial in a Controlled Environment?. Hypertension 2018; 72: 10-11 doi:10.1161/HYPERTENSIONAHA.118.11103
  • 51 Kopp C, Linz P, Dahlmann A. et al 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 2013; 61: 635-640 doi:10.1161/HYPERTENSIONAHA.111.00566
  • 52 Machnik A, Dahlmann A, Kopp C. et al Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension 2010; 55: 755-761 doi:10.1161/HYPERTENSIONAHA.109.143339
  • 53 Titze J, Lang R, Ilies C. et al Osmotically inactive skin Na + storage in rats. Am J Physiol Renal Physiol 2003; 285: F1108-F1117 doi:10.1152/ajprenal.00200.2003
  • 54 Titze J, Shakibaei M, Schafflhuber M. et al Glycosaminoglycan polymerization may enable osmotically inactive Na + storage in the skin. Am J Physiol Heart Circ Physiol 2004; 287: H203-H208 doi:10.1152/ajpheart.01237.2003
  • 55 Wiig H, Schroder A, Neuhofer W. et al Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 2013; 123: 2803-2815 doi:10.1172/JCI60113
  • 56 Wilck N, Balogh A, Marko L. et al The role of sodium in modulating immune cell function. Nat Rev Nephrol 2019 DOI: doi:10.1038/s41581-019-0167-y
  • 57 Kleinewietfeld M, Manzel A, Titze J. et al Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013; 496: 518-522 doi:10.1038/nature11868
  • 58 Wilck N, Matus MG, Kearney SM. et al Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551: 585-589 doi:10.1038/nature24628
  • 59 Zelante T, Iannitti RG, Cunha C. et al Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013; 39: 372-385 doi:10.1016/j.immuni.2013.08.003
  • 60 Gutierrez-Vazquez C, Quintana FJ. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity 2018; 48: 19-33 doi:10.1016/j.immuni.2017.12.012
  • 61 Norlander AE, Saleh MA, Kamat NV. et al Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II-Induced Hypertension. Hypertension 2016; 68: 167-174 doi:10.1161/HYPERTENSIONAHA.116.07493
  • 62 Liu Y, Rafferty TM, Rhee SW. et al CD8(+) T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension. Nature Comm 2017; 8: 14037 doi:10.1038/ncomms14037
  • 63 Nguyen H, Chiasson VL, Chatterjee P. et al Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res 2013; 97: 696-704 doi:10.1093/cvr/cvs422
  • 64 Bier A, Braun T, Khasbab R. et al A High Salt Diet Modulates the Gut Microbiota and Short Chain Fatty Acids Production in a Salt-Sensitive Hypertension Rat Model. Nutrients 2018: 10 DOI: doi:10.3390/nu10091154