Numerous colonoscopies are performed in Europe, either within organized colorectal cancer screening programs based on fecal immunochemical testing (FIT) or as primary screening procedures. In this process, accidental diminutive polyps are found that do not explain the positive FIT test and that may not significantly affect the cancer risk for that individual [1].

The resect and discard strategy constitutes an alternative to classical histopathology for small polyps that are the most common type found during colonoscopy. Microscopic analysis of these polyps, which have an intrinsic low risk of harboring advanced pathology, is very costly. As a consequence, real-time optical diagnosis with virtual chromoendoscopy entails a significant cost-saving potential for daily colorectal cancer screening and surveillance. Obviously, correctly differentiating between an adenoma and a hyperplastic polyp is crucial to implementing this strategy and to assessing the appropriate surveillance interval [2].

More than 10 years have passed since the feasibility and possible cost effectiveness of a resect and discard strategy was first demonstrated and suggested to be ready for prime time [3].

Recent European Society of Gastrointestinal Endoscopy (ESGE) guidelines for advanced imaging techniques incorporated this strategy as a valid option to replace histology under strict conditions of using validated scales, training and auditing of the practice [4]. Advanced imaging techniques like narrow band imaging (NBI) and classical chromoendoscopy have been around for more than 15 years now. We have validated scales like the Workgroup serrated polypS and Polyposis (WASP) classification, NBI International Colorectal Endoscopic (NICE) classification and more recently the BLI Adenoma Serrated International (BASIC) classification and simplified endoscopic classification to predict polyp histology (SIMPLE) classification for blue light imaging and I-scan that show high diagnostic accuracy [5–9].

So what takes us so long to go ahead, shift gear, and start applying all this knowledge and evidence in practice? Why are we still wasting millions of euros on the microscopic analysis of clinically insignificant polyps?

There are three reasons for this hesitance and cold water fear. First, there is the evidence sprouting from more real-life settings in daily endoscopy practices. Indeed the DISCARD II trial conducted in 1688 patients in routine clinical practice showed an insufficient test sensitivity of NBI optical diagnosis for diagnosing adenomas and predicting the correct surveillance interval [10]. Recently, a Dutch multicenter study looked at the performance of optical diagnosis in the Dutch colorectal screening program and found a too-low specificity of approximately 50 % for adenomas and accuracy between 70 % and 79 % [11]. The concerns and uncertainties resulting from these studies lead us to the second barrier for implementation. The endoscopist is not convinced that he or she can do this. This is nicely demonstrated by the findings of a large international survey published in this issue of EIO [12]. Willems et al conducted a survey with 808 endoscopists, mainly practicing in northern America, who answered questions addressing their current use of the resect and discard strategy. Eight-four percent of the endoscopists are not using this strategy and more importantly, 60 % believe that it is not feasible to implement in its current form. The authors showed clear geographical differences with application of a resect and discard strategy: in Europe by 39 % of respondents, in Asia by 45 %, but in Canada and the United States only 13 % and 5 %. In this survey, barriers for implementation were also noticeable: fear of making the wrong diagnosis (45 %), assigning the wrong interval (58 %) and also importantly, fear of medicolegal issues (54 %). A third potential barrier for implementation lies in the patient. Rex et al conducted a survey among American patients (corresponding to most of the respondents from the Willems survey) and found that the rate of
acceptance by patients was only 66%. In particular, y 50% of pa-
tients unwilling to accept a resect and discard strategy wanted
an absolute zero chance of cancer in diminutive polyps and
were willing to pay out of their own pocket for histological as-
essment of these small polyps [13].

So indeed, if we put these three barriers together, it is too
early to shift into a higher gear and have widespread implement-
ation of resect and discard. Interestingly, the survey by Will-
lems et al [12] also showed that although the majority of endos-
copists do not believe that optical diagnosis can replace histol-
ogy, 63% agreed that diminutive polyps can be left unresected
until the next screening colonoscopy because of the low risk of
cancer, but without a consensus on the correct follow-up after
leaving those in place. Moreover, although the majority of endos-
copists in North America were uncertain about making
an optical diagnosis and implementing a resect and discard
strategy, 55% of them admitted to leaving diminutive polyps
when they appeared to be non-adenomatous. This apparent
contradiction, however, entails a certain risk, because many of
these endoscopists were never trained in optical diagnosis but
nonetheless apparently use it. This indicates that although
there is a certain hesitance, there is also a need for proper and
correct implementation of optical diagnosis.

There are two possible ways to overcome this contradiction
and the barriers.

The first one is a dedicated training program to implement
optical diagnosis in a structured way. ESGE is currently finaliz-
ing a postgraduate curriculum for optical diagnosis throughout
the gastrointestinal tract. The emphasis will be on the use of
standardized training modules, feedback, and audit of practi-
ces both during and after training [14]. The fact that endos-
copists will be able to follow a standardized training track and
can show their diagnostic accuracy for optical diagnosis should
facilitate implementation. Endoscopists will feel more assured
and their patient can be convinced by the record of an endos-
copist’s training and performance. The latter should also help
to deal with potential medico-legal issues; medicine is not an
absolute science and we accept a 5% error margin in everyday
diagnostic testing, such as with standard blood tests.

The second possible solution and probably the one that
holds the biggest promise is automated diagnosis through arti-
ficial intelligence. In recent years, deep learning has revolution-
ized the field of computer-aided analysis and has also entered
the medical world, with results matching or even surpassing
human-expert-level performance [15]. For colorectal polyp de-
tection, several pilot studies introducing automated systems for
polyp segmentation and characterization have recently been
published, but clinical validation in a real-life setting re-
mains to be established [16–19]. There is a definite need to de-
velop a system applicable to different endoscopy systems and
that can be validated in a real-life clinical setting. Recently a
system with that potential has been commercialized but has
up to now not incorporated a module for optical diagnosis of
polyps [20]. Systems that have the possibility for characteriza-
tion have promising diagnostic performance and seem to out-
perform endoscopists, but the results still need to be con-
frmed in real-life clinical trials [21, 22].

So, in conclusion, it is time to switch to second gear for optical
diagnosis, that being proper training and subsequent imple-
mentation. Meanwhile, we await further validation of new Al-
based techniques that will pave the path for shifting to a sport
modus with easier implementation. Results with performance
of systems that are largely operator-independent and assessed
in well-designed prospective trials will most likely be attractive
to both endoscopists and patients. Optical diagnosis will event-
ually be like the lab tests that are performed daily, which once
validated are also acceptable from a medico-legal point of view,
which is one of the largest barriers identified in the survey by
Willems et al.

Competing interests

The authors declare that they have no conflict of interest.

References

[1] Lieberman D, Moravec M, Holub J et al. Polyp size and advanced his-
tology in patients undergoing colonoscopy screening: implications for
CT colonography. Gastroenterology 2008; 135: 1100–1105
[2] Hassan C, Quintero E, Dumonceau J-M et al. Post-polypectomy colo-
noscopy surveillance: European Society of Gastrointestinal Endoscopy
rectal polyps at routine colonoscopy (Detect Inspect ChAracterise Resect and Discard; DISCARD trial): a prospective cohort study. Lan-
cet Oncol 2009; 10: 1171–1178
and differentiation of colorectal neoplasia: European Society of Gas-
trointestinal Endoscopy (ESGE) Guideline – Update 2019. Endoscopy
2019; 51: 1155–1179
[5] Ijspeert JEG, Bastiaansen BAJ, van Leerdam ME et al. Development and
validation of the WASP classification system for optical diagnosis of
adenomas, hyperplastic polyps and sessile serrated adenomas/polyps.
Gut 2016; 65: 963–970
[6] Hewett DG, Kaltenbach T, Sano Y et al. Validation of a simple classifi-
sation system for endoscopic diagnosis of small colorectal polyps
e1
International Classification) classification for colorectal polyp charac-
terization with blue light imaging. Endoscopy 2018; 50: 211–220
agnosis of 10-mm colorectal polyps based on a dedicated software.
Endoscopy 2020; 52: 52–60
[9] Iacucci M, Trovato C, Daperno M et al. Development and validation of
the SIMPLE endoscopic classification of diminutive and small colorec-
tal polyps. Endoscopy 2018; 50: 779–789
diagnosis of small colorectal polyps in routine clinical practice: the
Detect Inspect Characterise Resect and Discard 2 (DISCARD 2) study.
Gut 2017; 66: 887–895
of diminutive polyps in the Dutch Bowel Cancer Screening Program:
Are we ready to start? Endosc Int Open 2020; 08: E257–E265
[12] Open EL. Uptake and barriers for implementation of the resect and
discard strategy. 2020; 08: E684–E692

E925


