Horm Metab Res 2020; 52(08): 588-597
DOI: 10.1055/a-1145-8479
Review

Update on the Treatment of Medullary Thyroid Carcinoma in Patients with Multiple Endocrine Neoplasia Type 2

Maran Ilanchezhian
1   Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
,
Sophia Khan
1   Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
,
Christian Okafor
1   Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
,
John Glod
1   Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
,
Jaydira Del Rivero
1   Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
› Author Affiliations

Abstract

Medullary Thyroid Carcinoma (MTC) is a rare neuroendocrine cancer that accounts for 1–2% of thyroid cancers in the United States (U.S.). While most cases are sporadic, 25% of MTC cases are hereditary. These hereditary cases occur in the setting of Multiple Endocrine Neoplasia Type 2A (MEN2A) or 2B (MEN2B) driven by mutations in the Rearranged during Transfection RET proto-oncogene. This article discusses hereditary MTC in the setting of MEN2 and the treatment options available for it. The first line treatment for this disease is typically a total thyroidectomy and tyrosine kinase inhibitors. Two tyrosine kinase inhibitors, vandetanib and cabozantinib, have been approved for treatment of advanced MTC, but options beyond those are limited. However, several promising treatments are being studied, which are discussed in this review.



Publication History

Received: 22 November 2019

Accepted: 18 March 2020

Article published online:
16 April 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Wells SA, Asa SL, Dralle H. et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015; 25: 567-610
  • 2 Hzard JB, Hawk WA, Crile G. Medullary (solid) carcinoma of the thyroid - A clinicopathologic entity. J Clin Endocrinol Metab 1959; 19: 152-161
  • 3 Tashjian AH, Melvin EW. Medullary carcinoma of the thyroid gland. Studies of thyrocalcitonin in plasma and tumor extracts. N Engl J Med 1968; 279: 279-283
  • 4 Williams ED. Histogenesis of medullary carcinoma of the thyroid. J Clin Pathol 1966; 19: 114-118
  • 5 Carlson KM, Dou S, Chi D. et al. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci USA 1994; 91: 1579-1583
  • 6 Donis-Keller H, Dou S, Chi D. et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 1993; 2: 851-856
  • 7 Eng C, Smith DP, Mulligan LM. et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet 1994; 3: 237-241
  • 8 Hofstra RM, Landsvater RM, Ceccherini I. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994; 367: 375-376
  • 9 Marsh DJ, Learoyd DL, Andrew SD. et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinoma. Clin Endocrinol (Oxf) 1996; 44: 249-257
  • 10 Mulligan LM, Kwok JB, Healey CS. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993; 363: 458-460
  • 11 Boichard A, Croux L, Al Ghuzlan A. et al. Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J Clin Endocrinol Metab 2012; 97: E2031-E2035
  • 12 Ciampi R, Mian C, Fugazzola L. et al. Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid 2013; 23: 50-57
  • 13 Moura MM, Cavaco BM, Pinto AE. et al. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab 2011; 96: E863-E868
  • 14 Castinetti F, Moley J, Mulligan L. et al. A comprehensive review on MEN2B. Endocr Relat Cancer 2018; 25: T29-T39
  • 15 Marquard J, Eng C. Multiple Endocrine Neoplasia Type 2, in GeneReviews® [Internet. 2015 University of Washington, Seattle
  • 16 Roy M, Chen H, Sippel RS. Current understanding and management of medullary thyroid. Cancer 2013; 18: 1093-1100
  • 17 Cox TM, Fagan EA, Hillyard CJ. et al. Role of calcitonin in diarrhoea associated with medullary carcinoma of the thyroid. Gut 1979; 20: 629-633
  • 18 Eng C, Clayton D, Schuffenecker I. et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 1996; 276: 1575-1579
  • 19 Seri M, Celli I, Betsos N. et al. A Cys634Gly substitution of the RET proto-oncogene in a family with recurrence of multiple endocrine neoplasia type 2A and cutaneous lichen amyloidosis. Clin Genet 1997; 51: 86-90
  • 20 Modigliani E, Cohen R, Campos J-M. et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. Clin Endocrinol 1998; 48: 265-273
  • 21 AWG JaydiraDelRivero. Endocrine Cancers. In: The Bethesda Book of Clinical Oncology. 2019: 449-467
  • 22 Knowles PP, Murray-Rust J, Kjaer S. et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 2006; 281: 33577-33587
  • 23 Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol 2013; 5: a009233
  • 24 Figlioli G, Landi S, Romei C. et al. Medullary thyroid carcinoma (MTC) and RET proto-oncogene: Mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res 2013; 752: 36-44
  • 25 Jackson MB, Guttenberg M, Hedrick H. et al. Multiple endocrine neoplasia type 2A in a kindred with C634Y mutation. Pediatrics 2005; 116: e468-e471
  • 26 Dottorini ME, Assi A, Sironi M. et al. Multivariate analysis of patients with medullary thyroid carcinoma. Prognostic significance and impact on treatment of clinical and pathologic variables. Cancer 1996; 77: 1556-1565
  • 27 Kebebew E, Ituarte PH, Siperstein AE. et al. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer 2000; 88: 1139-1148
  • 28 Saad MF, Ordonez NG, Rashid RK. et al. Medullary carcinoma of the thyroid. A study of the clinical features and prognostic factors in 161 patients. Medicine (Baltimore) 1984; 63: 319-342
  • 29 Ilias I, Torpy DJ, Pacak K. et al. Cushing's syndrome due to ectopic corticotropin secretion: twenty years' experience at the National Institutes of Health. J Clin Endocrinol Metab 2005; 90: 4955-4962
  • 30 Barbosa SL, Rodien P, Leboulleux S. et al. Ectopic adrenocorticotropic hormone-syndrome in medullary carcinoma of the thyroid: A retrospective analysis and review of the literature. Thyroid 2005; 15: 618-623
  • 31 Bhanot P, Yang J, Schnadig VJ. et al. Role of FNA cytology and immunochemistry in the diagnosis and management of medullary thyroid carcinoma: report of six cases and review of the literature. Diagn Cytopathol 2007; 35: 285-292
  • 32 Bugalho MJ, Santos JR, Sobrinho L. Preoperative diagnosis of medullary thyroid carcinoma: fine needle aspiration cytology as compared with serum calcitonin measurement. J Surg Oncol 2005; 91: 56-60
  • 33 Kudo T, Miyauchi A, Ito Y. et al. Diagnosis of medullary thyroid carcinoma by calcitonin measurement in fine-needle aspiration biopsy specimens. Thyroid 2007; 17: 635-638
  • 34 Barbet J, Campion L, Kraeber-Bodere F. et al. Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J Clin Endocrinol Metab 2005; 90: 6077-6084
  • 35 Laure Giraudet A, Al Ghulzan A, Auperin A. et al. Progression of medullary thyroid carcinoma: Assessment with calcitonin and carcinoembryonic antigen doubling times. Eur J Endocrinol 2008; 158: 239-246
  • 36 Miyauchi A, Onishi T, Morimoto S. et al. Relation of doubling time of plasma calcitonin levels to prognosis and recurrence of medullary thyroid carcinoma. Ann Surg 1984; 199: 461-466
  • 37 Raue F, Frank-Raue K. Epidemiology and Clinical Presentation of Medullary Thyroid Carcinoma, in Medullary Thyroid Carcinoma: Biology – Management – Treatment. Raue F. Ed Cham: Springer International Publishing; 2015: 61-90
  • 38 Giraudet AL, Vanel D, Leboulleux S. et al. Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab 2007; 92: 4185-4190
  • 39 Oudoux A, Salaun PY, Bournaud C. et al. Sensitivity and prognostic value of positron emission tomography with F-18-fluorodeoxyglucose and sensitivity of immunoscintigraphy in patients with medullary thyroid carcinoma treated with anticarcinoembryonic antigen-targeted radioimmunotherapy. J Clin Endocrinol Metab 2007; 92: 4590-4597
  • 40 Machens A, Dralle H. Prognostic impact of N staging in 715 medullary thyroid cancer patients: proposal for a revised staging system. Ann Surg 2013; 257: 323-329
  • 41 Pelizzo MR, Boschin IM, Bernante P. et al. Natural history, diagnosis, treatment and outcome of medullary thyroid cancer: 37 years experience on 157 patients. Eur J Surg Oncol 2007; 33: 493-497
  • 42 Roman S, Lin R, Sosa JA. Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer 2006; 107: 2134-2142
  • 43 Xu JY, Murphy WA, Milton DR. et al. Bone metastases and skeletal-related events in medullary thyroid carcinoma. J Clin Endocrinol Metab 2016; 101: 4871-4877
  • 44 Orita Y, Sugitani I, Toda K. et al. Zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma. Thyroid 2011; 21: 31-35
  • 45 Akyildiz HY, Mitchell J, Milas M. et al. Laparoscopic radiofrequency thermal ablation of neuroendocrine hepatic metastases: long-term follow-up. Surgery 2010; 148: 1288-1293 discussion 1293
  • 46 Wertenbroek MW, Links TP, Prins TR. et al. Radiofrequency ablation of hepatic metastases from thyroid carcinoma. Thyroid 2008; 18: 1105-1110
  • 47 Fromigue J, De Baere T, Baudin E. et al. Chemoembolization for liver metastases from medullary thyroid carcinoma. J Clin Endocrinol Metab 2006; 91: 2496-2499
  • 48 Brierley J, Tsang R, Simpson WJ. et al. Medullary thyroid cancer: analyses of survival and prognostic factors and the role of radiation therapy in local control. Thyroid 1996; 6: 305-310
  • 49 Nocera M, Baudin E, Pellegriti G. et al. Treatment of advanced medullary thyroid cancer with an alternating combination of doxorubicin-streptozocin and 5 FU-dacarbazine. Groupe d'Etude des Tumeurs a Calcitonine (GETC). Br J Cancer 2000; 83: 715-718
  • 50 Wu LT, Averbuch SD, Ball DW. et al. Treatment of advanced medullary thyroid carcinoma with a combination of cyclophosphamide, vincristine, and dacarbazine. Cancer 1994; 73: 432-436
  • 51 Bajetta E, Rimassa L, Carnaghi C. et al. 5-Fluorouracil, dacarbazine, and epirubicin in the treatment of patients with neuroendocrine tumors. Cancer 1998; 83: 372-378
  • 52 Ball DW. Medullary thyroid cancer: monitoring and therapy. Endocrinol Metab Clin North Am 2007; 36: 823-837. viii
  • 53 Orlandi F, Caraci P, Berruti A. et al. Chemotherapy with dacarbazine and 5-fluorouracil in advanced medullary thyroid cancer. Ann Oncol 1994; 5: 763-765
  • 54 Petursson SR. Metastatic medullary thyroid carcinoma. Complete response to combination chemotherapy with dacarbazine and 5-fluorouracil. Cancer 1988; 62: 1899-1903
  • 55 Carlomagno F, Vitagliano D, Guida T. et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 2002; 62: 7284-7290
  • 56 Wells SA, Gosnell JE, Gagel RF. et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 2010; 28: 767-772
  • 57 Wells SA, Robinson BG. Gagel RF et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. J Clin Oncol 2012; 30: 134-141
  • 58 Kraft IL, Akshintala S, Zhu Y. et al. Outcomes of children and adolescents with advanced hereditary medullary thyroid carcinoma treated with vandetanib. Clin Cancer Res 2018; 24: 753-765
  • 59 Checkley D, Tessier JJ, Kendrew J. et al. Use of dynamic contrast-enhanced MRI to evaluate acute treatment with ZD6474, a VEGF signalling inhibitor, in PC-3 prostate tumours. Br J Cancer 2003; 89: 1889-1895
  • 60 Yakes FM, Chen J, Tan J. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 2011; 10: 2298-2308
  • 61 Kocsis J, Szekanecz E, Bassam A. et al. First line sorafenib treatment for metastatic medullary thyroid cancer: Efficacy and safety analysis. Exp Clin Endocrinol Diabetes 2019; 127: 240-246
  • 62 Wilhelm SM, Carter C, Tang L. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099-7109
  • 63 Kim DW, Jo YS, Jung HS. et al. An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J Clin Endocrinol Metab 2006; 91: 4070-4076
  • 64 Ravaud A, de la Fouchardiere C, Caron P. et al. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: mature data from the THYSU study. Eur J Cancer 2017; 76: 110-117
  • 65 Schlumberger M, Jarzab B, Cabanillas ME. et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res 2016; 22: 44-53
  • 66 Zhu C, Ma X, Hu Y. et al. Safety and efficacy profile of lenvatinib in cancer therapy: A systematic review and meta-analysis. Oncotarget 2016; 7: 44545-44557
  • 67 Kumar R, Knick VB, Rudolph SK. et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 2007; 6: 2012-2021
  • 68 Bible KC, Suman VJ, Molina JR. et al. A multicenter phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma: MC057H. J Clin Endocrinol Metab 2014; 99: 1687-1693
  • 69 Schneider TC, de Wit D, Links TP. et al. Beneficial Effects of the mTOR Inhibitor Everolimus in Patients with Advanced Medullary Thyroid Carcinoma: Subgroup Results of a Phase II Trial % J. Int J Endocrinol 2015; 8
  • 70 Drilon AE, Subbiah V, Oxnard GR. et al. A phase 1 study of LOXO-292, a potent and highly selective RET inhibitor, in patients with RET-altered cancers. J Clin Oncol 2018; 36: 102
  • 71 Gainor JF, Lee DH, Curigliano G. et al. Clinical activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients (pts) with advanced RET-fusion+ non-small cell lung cancer (NSCLC). J Clin Oncol 2019; 37: 9008
  • 72 Herac M, Niederle B, Raderer M. et al. Expression of somatostatin receptor 2A in medullary thyroid carcinoma is associated with lymph node metastasis. Apmis 2016; 124: 839-845
  • 73 Papotti M, Croce S, Bello M. et al. Expression of somatostatin receptor types 2, 3 and 5 in biopsies and surgical specimens of human lung tumours. Correlation with preoperative octreotide scintigraphy. Virchows Arch 2001; 439: 787-797
  • 74 Zatelli MC, Tagliati F, Taylor JE. et al. Somatostatin receptor subtypes 2 and 5 differentially affect proliferation in vitro of the human medullary thyroid carcinoma cell line tt. J Clin Endocrinol Metab 2001; 86: 2161-2169
  • 75 Iten F, Muller B, Schindler C. et al. Response to [90Yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res 2007; 13: 6696-6702
  • 76 Blaker M, de Weerth A, Tometten M. et al. Expression of the cholecystokinin 2-receptor in normal human thyroid gland and medullary thyroid carcinoma. Eur J Endocrinol 2002; 146: 89-96
  • 77 Hubalewska-Dydejczyk A, Erba P, Decristoforo C. et al. Theranostic management of medullary thyroid cancer (MTC) with (111In/177Lu) CP04: how close are we to a clinical solution?. Endocr Abst 2017; 49: EP1445 DOI: 10.1530/endoabs.49.EP1445.
  • 78 Rottenburger C, Nicolas G, McDougall L. et al. Evaluation of the CCK-2 receptor agonist 177Lu-PP-F11N for radionuclide therapy of medullary thyroid carcinoma - Final Results of the phase 0 "Lumed" Study. J Nucl Med 2019; 60: 561
  • 79 Topalian SL, Taube JM, Anders RA. et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016; 16: 275-287
  • 80 Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014; 159: 676-690
  • 81 Angell TE, Lechner MG, Jang JK. et al. BRAF V600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid 2014; 24: 1385-1393
  • 82 Tuccilli C, Baldini E, Sorrenti S. et al. CTLA-4 and PD-1 ligand gene expression in epithelial thyroid cancers. Int J Endocrinol 2018; 1742951
  • 83 Ulisse S, Tuccilli C, Sorrenti S. et al. PD-1 Ligand expression in epithelial thyroid cancers: Potential Clinical Implications. Int J Mol Sci 2019; 20: 1405
  • 84 Bi Y, Ren X, Bai X. et al. PD-1/PD-L1 expressions in medullary thyroid carcinoma: Clinicopathologic and prognostic analysis of Chinese population. Eur J Surg Oncol 2019; 45: 353-358
  • 85 Mehnert JM, Varga A, Brose M. et al. Pembrolizumab for advanced papillary or follicular thyroid cancer: Preliminary results from the phase 1b KEYNOTE-028 study. J Clin Oncol 2016; 34: 6091
  • 86 Bilusic M, Heery CR, Arlen PM. et al. Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunol Immunother 2014; 63: 225-234