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Introduction
Primary aldosteronism (PA) manifests as secondary hypertension 
and is defined as excessive autonomous endogenous aldosterone 

production unresponsive to renin regulation, further leading to el-
evated blood pressure and electrolyte imbalance. PA has a preva-
lence of 4.3–9.5 % in all patients with hypertension, 13 % of those 
with stage 3 hypertension, and 17–23 % of those with resistant hy-
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Abstr act

Primary aldosteronism (PA) is the most common cause of sec-
ondary hypertension. Increasing evidence has demonstrated 
an increased cardiovascular risk in patients with PA compared 
to those with essential hypertension (EH), including atrial fibril-
lation (AF), the most prevalent arrhythmia among adults that 
is associated with an elevated risk of subsequent cerebro-car-
diovascular adverse events. The mechanisms of increased prev-
alence of AF in PA patients are complex. Excessive aldosterone 
production is regarded to be a key component in the patho-
genesis of AF, in addition to arterial hypertension and electro-
lyte imbalance. In addition, several translational and clinical 
studies have reported that structural remodeling with atrial 
fibrosis and electrical remodeling with arrhythmogenicity in-
duced by an excess of aldosterone also play major roles in AF 
genesis. Clinical studies from several registries and meta-anal-
ysis have reported an increased prevalence and risk of AF in PA 
patients compared to EH patients. Recent trials have further 
demonstrated a reduction in the risk of new-onset atrial fibril-
lation (NOAF) after adrenalectomy, while the results of medical 
treatment with mineralocorticoid receptor antagonists (MRAs) 
have been inconsistent. This review outlines the current evi-
dence of the relationship between PA and AF, and highlights 
recent progress in the management of PA with regards to the 
development of AF.
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pertension [1]. Higher rates of long-term mortality and co-mor-
bidities have been reported in PA patients compared to patients 
with essential hypertension (EH) [1–3]. Atrial fibrillation (AF) is the 
most common arrhythmia in adults, and has a prevalence of 3 % in 
adults aged over 20 years, and more in the elderly and patients with 
chronic illnesses, and it has been shown to increase the risk of all-
cause mortality and major cardiac and cerebrovascular complica-
tions [4]. In patient with PA, AF is the most common seen arrhyth-
mia with a prevalence of 7.1–7.3 % [2, 5]. In German Conn’s study, 
AF occurred in 7.1 %; other atrial or ventricular arrhythmia occurred 
in 5.2 % of the patients [5].

The pathogenesis of AF is complex, and involves abnormal car-
diac electrical activity from the atrium and adjacent structures with 
subsequent cardiac electrical, structural, neural and autonomic re-
modeling [6]. The progressive remodeling and degradation with 
fibrosis of the atrium and other cardiac structure combined with 
AF has been shown to increase the risk of thromboembolism [7].

Previous studies on the association between aldosterone and 
AF have mostly been conducted on clinical patients with heart fail-
ure and related mineralocorticoid receptor antagonists (MRAs) 
treatment as upstream or conjunctional therapy. In addition, sev-
eral animal and cell experiments have reported aldosterone-in-
duced cardiac structural changes or electrophysiological altera-
tions at the pathological or molecular level [8]. The pro-fibrotic 
and pro-arrhythmogenic effects of aldosterone and mineralocor-
ticoid receptor (MR) activation have been proposed in these stud-
ies. This implies that excessive aldosterone in PA patients may be 
associated with the development of AF, and that effective treat-
ment of PA may decrease the risk of further occurrences of AF.

This review evaluates the current evidence of the relationship 
between PA and AF, from the pathogenesis of AF with a clinical or 
basic approach to concurrent clinical trials about PA treatment.

Pathophysiology of the occurrence of AF in PA 
patients
AF genesis
The leading hypothesis for the genesis of AF is initiation by ectopic 
firing and perpetuation by reentry [6]. The molecular basis for focal 
ectopic firing from myocyte sleeves within the pulmonary veins [9] 
and atrial tissue as the disease progresses [6] is attributed to a di-
astolic leak of Ca2 +  from the sarcoplasmic reticulum, resulting in 
Na +  inward current via Na + –Ca2 +  exchange, and subsequently 
spontaneous myocyte depolarization [10]. There are two main pos-
sible mechanisms of AF reentry, including reentrant rotors or mul-
tiple independent wavelets [6]. Slow conduction wavefront veloc-
ity, indicating structural remodeling, and short effective refractory 
periods (ERPs) of the atrium, indicating electrical remodeling, pro-
mote and perpetuate the reentry [6]. In addition, fibrotic changes, 
abnormalities of atrial cardiomyocytes or interstitial matrix of the 
atrium all also contribute to reentry [6].

For patients with PA, there are several possible mechanisms for 
the development of AF, including arterial hypertension and ven-
tricular remodeling, hypokalemia, atrial structural and electrical 
remodeling caused by excess aldosterone (▶Fig. 1).

Atrial structural remodeling
Cardiac fibrosis results from excessive activation of cardiac fibro-
blasts and myofibroblasts [11], and atrium-specific fibrosis presents 
with fibrotic atrial cardiomyopathy and promotes AF with an ele-
vated risk of thromboembolism [7]. Excess aldosterone has been 
shown to cause cardiac fibrosis in many previous studies [12, 13]. Prior 
to the development of fibrosis, aldosterone and MR activation facili-
tate inflammation by inducing the production of reactive oxygen spe-
cies (ROS), which activate proinflammatory transcription factors [14] 
in macrophages [15] and the heart [16]. Furthermore, aldosterone 

▶Fig. 1	 Pathogenesis of atrial fibrillation in primary aldosteronism. Primary aldosteronism (PA) is characteristic of aldosterone excess, which causes 
atrial fibrillation (AF) by the following mechanisms. Aldosterone excess causes arterial hypertension and hypokalemia, both related to increased risk 
of AF. Direct effect of excessive aldosterone working on cardiac structure favoring could be summarized into two: atrial structural remodeling and 
atrial electrical remodeling. Atrial structural remodeling is caused by increased left ventricle and atrium fibrosis with systemic inflammation involved, 
through the emergence of diastolic and systolic dysfunction; atrial electrical remodeling is caused by aldosterone-induced atrial fibrosis, altered 
calcium and potassium channel function, intra-cellular sodium-calcium dysregulation, further promotion of reentry and shortening of action poten-
tial to cause AF.

358

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Pan C-T et al. Atrial Fibrillation in PA …  Horm Metab Res 2020; 52: 357–365

causes cardiac interstitial macrophage infiltration [17], and activates 
the MRs on macrophages to promote the expressions of profibrotic 
genes, including transforming growth factor β1 (TGF-β1) [18]  
and plasminogen activator inhibitor-1 (PAI‑1) [19]. PAI-1 inhibits 
plasmin-dependent matrix metalloproteinase (MMP) activation to 
limit collagen degradation and thus increase fibrosis [20]. TGF-β 
can enhance the formation of myofibroblasts, which express al-
pha-smooth muscle actin (α-SMA), to drive collagen formation [21]. 
Myofibroblasts, which are derived from fibroblasts, play a particularly 
crucial role in cardiac fibrosis due to a nearly two-fold higher capacity 
of collagen synthesis and higher capacity of synthesizing many  
cytokines and chemokines [22]. Aldosterone has been shown to  
induce the transdifferentiation of neonatal rat cardiac fibroblasts to 
myofibroblasts via Keap1/Nrf2 signaling pathways [23].

Atrial structural remodeling is a major promoting factor of reen-
try [6]. An excess of aldosterone can cause increased atrial fibrosis 
[24] and further conduction interference. Reil et al. found that al-
dosterone-infused rats had increased atrial size, fibroblasts and in-
terstitial collagen, but reduced active MMP-13, a collagen degrad-
ing enzyme in both atriums [25]. They also found that P-wave du-
ration, total right atrium activation time, and anisotropy of local 
conduction time, as an index of atrial structure remodeling, were 
all prolonged in aldosterone-infused rats compared with controls 
[25]. Heterogeneous pathways of slow conduction and atrial dila-
tation both provide larger pathways that are more ready for sus-
tained reentrant circuits [26]. The effects of structural atrial remod-
eling on the development of AF were most clearly demonstrated 
in a cardiac myocyte-specific transgenic mouse model overexpress-
ing TGF-β1. This model resulted in atrial fibrosis, and the increase 
in atrial fibrosis significantly increased susceptibility to AF [21].

Atrial electrical remodeling
Aldosterone-induced atrial fibrosis-related re-entry circuits are an-
other possible mechanism of AF in PA patient. Fibrotic tissue decreas-
es gap junction coupling and causes muscle bundle discontinuities 
which reduce and promote re-entry circuits [27]. Electrophysiolog-
ical changes have also been documented with aldosterone-treated 
cells and animal models. In an aldosterone infusion rat model, Lam-
mers et al. reported prolonged duration of AF after transesophage-
al atrial burst stimulation [28]. Interestingly, aldosterone infusion 
did not affect ventricular function or atrial pressure in their study, 
but lengthened P-wave duration. P-wave duration is a marker of atrial 
conduction time and is associated with a higher risk of AF [29, 30]. 
Furthermore, aldosterone infusion has been associated with a sig-
nificant shortening of action potential and increased protein expres-
sions of Kir2.1 and Kv1.5 [28]. Inwardly-rectifying potassium chan-
nels (Kir) are characterized by the property of inward-rectification, 
which is defined as the ability to allow large inward currents and 
smaller outward currents. The activation of Kir would therefore  
promote the formation of AF. This implies that electrical condition 
abnormalities and hypokalemia may cause AF in patient with PA.

Ouvrard-Pascaud et al. reported that aldosterone increased 
L-type Ca2 +  channels in neonatal rat atrial mouse cells, and de-
creased the activity of the rapidly activating delayed rectifier po-
tassium current IKr and transient outward K +  current Ito1 [31]. Al-
dosterone has also been shown to promotes the prolonged release 
of Ca2 +  from the sarcoplasmic reticulum due to opening of ryano-

dine receptors, finally leading to Ca2 +  overload and thereby pro-
moting AF [32]. Aldosterone has also been shown to increase ICaT 
and induce calcium overload [33]. This aldosterone-induced calci-
um overload will produce a positive feedback vicious cycle of atrial 
electrical remodeling and leading to AF.

In a special group of PA patients (familial hyperaldosteronism 
type III) who were characterized by having germline mutation of 
KCNJ5 (potassium inwardly-rectifying channel, subfamily J, mem-
ber 5) [34], KCNJ5 mutation is also a possible cause of AF genesis. 
Loss of function of KCNJ5 may result in long QT syndrome and AF 
[35]. A previous study revealed that germline KCNJ5 mutations are 
also associated with early-onset lone AF in Caucasians [36], while 
novel molecules targeting mutant KCNJ5 potassium channels are 
under development to treat bradyarrhythmia and AF [37].

Arterial hypertension and ventricular remodeling
Chronic hypertension results in left ventricular hypertrophy [38] 
and diastolic dysfunction and consequently elevation of left ven-
tricular end diastolic pressure [39], and it is a major risk factor for AF 
[40]. Left ventricular diastolic dysfunction and elevated left ventricu-
lar end diastolic pressure result in elevated left atrial pressure, struc-
tural changes, and subsequently an increased occurrence of AF [41]. 
In animal models, hypertension has been shown to cause left atrial re-
modeling, including atrial dilatation, hypertrophy, inflammatory infil-
trates, interstitial fibrosis, conduction slowing and heterogeneity [42]. 
In clinical studies, the Framingham Heart Study revealed that levels of 
systolic and pulse pressures were significantly associated with in-
creased left atrial size [43], and an increased left atrial size has been 
shown to contribute to the development of AF [44]. Furthermore, even 
after adjusting for age and sex, hypertension has been reported to re-
main a significant predictor of AF [45].

Hypokalemia
Hypokalemia is defined as a low serum potassium level, and it has 
been reported in cases and series of AF in patients with PA [46, 47]. 
An epidemiological study reported that a low serum level of potas-
sium was associated with a higher risk of AF among the general 
population [48] or patients after cardiac surgery [49]. The electro-
physiological effects of hypokalemia include resting membrane hy-
perpolarization, Na + –K +  ATPase inhibition, and suppression of K +  
channel conductance, resulting in action potential duration pro-
longation, reduced repolarization reserve, early afterdepolariza-
tion, delayed afterdepolarization, and automaticity [50], which 
may all contribute to the genesis of AF. Clinically, previous study 
from the German Conn's Registry reported that atrial arrhythmia 
was found more common in those with the hypokalemic variant 
(12.3 %) than in those with normokalemic PA (7.8 %), although the 
difference was not statistically significant [5].

PA and AF: Clinical studies and implications
Epidemiology
Incidence of AF in PA
In 2005, Milliez et al. reported a 12.1-fold elevated risk and a prev-
alence of 7.3 % of AF among 124 PA patients compared to 465 EH 
controls with a prevalence of 0.6 % [2]. Their study followed the pa-
tients for 3 years, after which the PA patients also held a 4.2-fold 
higher risk of stroke than the EH controls. Although the sample size 
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was relatively small, the study provided initial and early evidence 
of the additional cardiovascular risk of PA over EH after blood pres-
sure had been matched between the two groups. In 2008, Catena 
et al. reported an elevated odds ratio of 4.93 for sustained arrhyth-
mia among 54 PA patients compared with EH controls, although 
the definition of sustained arrhythmia included arrhythmia other 
than AF [51]. In 2009, the German Conn's Registry reported a prev-
alence rate of AF of 7.1 % among 553 of 640 PA patients, and atrial 
arrhythmia was more common in those with the hypokalemic var-
iant (12.3 %) than in those with normokalemic PA (7.8 %) without 
statistical significance [5]. In addition, Savard et al. reported a sig-
nificantly higher prevalence of AF of 3.9 % with an adjusted odds 
ratio of 5.0 among 459 PA patients compared to 1290 EH controls 
in whom the prevalence was 1.1 % [52]. Moreover, Mulatero et al. 
reported that sustained arrhythmias (AF, atrial flutter, sustained 
ventricular tachycardia, and ventricular fibrillation) were signifi-
cantly more common among 270 PA patients after 12 years of fol-
low-up with an odds ratio of 2.2 compared to EH patients [53]. In 
2018, the JPAS Study Group further reported a prevalence of AF of 
2.8 % in a multi-center, nationwide, and large cohort of 2582 PA pa-
tients over a 10-year period [54]. Furthermore, Monticone et al. re-
ported a 3.52-fold higher risk of AF in 3838 PA patients compared 
to 9284 EH controls in a meta-analysis of 31 studies over a median 
period of 8.8 years [3]. These data provide evidence of the strong 
association between aldosterone and AF in addition to the results 
reported in the aforementioned basic studies.

Incidence of PA in AF
An elevated risk of AF in patients with PA has been reported in nu-
merous clinical studies as discussed above, however, the risk and 
prevalence of PA among patients with AF has been less studied. 
Mourtzinis et al. reported that screening for PA using the aldoster-
one to renin ratio resulted in the diagnosis of four cases of PA in 149 
AF patients (2.6 %) in 2017 [55]. In 2018, the same group reported 
a prevalence of PA of 0.056 % among 713 569 AF patients, com-
pared with 0.024 % in AF-naive controls using a Swedish national 
registry [56]. A multicenter prospective study (PAPPHY) further re-
ported increased prevalence of PA among hypertensive patients 
with unexplained AF [57].

Clinical evidence associated with the occurrence of 
AF in PA
Left atrium structure and function
Since electrical abnormalities often originate from the left atrium, 
AF is associated with left atrial function [7, 58]. Left atrium func-
tion is evaluated using echocardiographic studies, from left atrium 
diameter, left atrial volume index (LAVI), or left atrial strain analy-
sis [59]. Dilatation of the left atrium and an increase in volume has 
been positively correlated with the pathogenesis of AF [58]. In 2017, 
Yang et al. reported a higher LAVI among 100 PA patients compared 
to 100 EH controls [60]. Our previous investigation of left ventricu-
lar subclinical systolic dysfunction using strain analysis also showed 
a higher left atrial diameter and LAVI among PA patients compared 
to those among matched EH controls, although the difference did 
not reach statistical significance [61]. Wang et al. recently reported 
increased left atrial stiffness in 107 PA patients with lower left  

atrial velocity, strain, and strain rate, and higher left atrial stiffness 
index compared to 50 EH controls [62].

Left ventricular structure and function
Left ventricular hypertrophy (LVH) with increased left ventricular 
mass is a key indicator of diastolic dysfunction[38], and diastolic 
dysfunction is currently considered to be a potential risk factor for 
the pathogenesis of AF[41]. Numerous previous clinical studies 
have reported more LVH and increased left ventricular mass index 
(LVMI) among PA patients compared to EH controls.

In 1996, Rossi et al. reported significantly increased left ven-
tricular wall thickness and LVMI among 34 patients with PA matched 
to 34 EH controls with a higher percentage of LVH and concentric 
remodeling [12]. In 2005, Stowasser et al. reported increased left 
ventricular wall thicknesses and reduced diastolic function using 
Doppler studies among patients with familial hyperaldosteronism 
type I [63]. In 2007, Catena et al. reported greater left ventricular 
mass and more LVH among 54 PA patients compared with 274 EH 
controls [64]. In 2008, Muiessan et al. investigated left ventricular 
geometry with more inappropriate left ventricular mass derived 
from the difference between measured LVMI and predicted LVMI 
in 125 PA patients compared to 125 EH patients [65]. In 2016,  
Cesari et al. reported increased left ventricular enlargement and 
high prevalence of LVH and diastolic dysfunction using Doppler and 
tissue Doppler studies among 262 PA patients [66]. In our previous 
study of 30 adrenal adenoma patients, we found a significantly  
decreased LVMI in patients with LVH after adrenalectomy [67]. We 
also reported the significant positive predictive ability of 24-hour 
urinary aldosterone to LVMI and inappropriate LVMI among PA  
patients, as well as tissue-Doppler studies measuring diastolic dys-
function [68, 69].

Autonomic dysfunction
Autonomic dysfunction has been reported in PA patients with re-
versible sympathetic overactivity before and after adrenalectomy 
[70]. Heart rate variability (HRV) has been shown to be a valid tool 
to evaluate autonomic nerve system [71], and to be a potential pre-
dictor of AF in middle-aged individuals [72]. Left atrium dilatation 
has been correlated with decreased HRV [73]. A recent study fur-
ther reported an association between decreased HRV and a higher 
incidence of AF in a large cohort with long-term follow-up, as a 
presentation of cardiac autonomic dysfunction [74]. In 1995, Veg-
lio et al. reported impaired heart rate and blood pressure variabil-
ity when responding to tilt in 17 PA patients compared to 11 EH 
controls[75]. We previously reported comparable conventional 
HRV parameters but decreased heart rhythm complexity among 
20 PA patients compared to 25 EH controls, and partial reversal of 
heart rhythm complexity impairment after adrenalectomy in PA 
patients [76]. Impairment of HRV or heart rhythm complexity may 
contribute AF genesis. However, the relations between HRV and AF 
in PA patients are still unclear and need further studies.

Treatment of PA and the effect on AF
Correction of hypertension and hypokalemia and targeted 
treatment for excessive aldosterone
Treatment with antihypertensive agents for elevated blood pres-
sure and potassium supplements has been shown to reduce the 
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risk of AF in several hypertension trials [77]. PA has been shown to 
be associated with a much higher cardiovascular risk than age-, 
sex-, and BP-matched EH patients in a clinical study and meta-anal-
ysis [2, 3], and other clinical studies have shown that targeted treat-
ment is beneficial for hypertensive patients [51, 78, 79].

The targeted treatment for PA recommended in current guide-
lines is unilateral laparoscopic adrenalectomy for patients with doc-
umented unilateral PA to cure hyperaldosteronism and hypo-
kalemia and cure or substantially reduce elevated blood pressure. 
For those with bilateral PA and unilateral PA not receiving surgery, 
medical treatment with an MRA is suggested to lower both blood 
pressure and the deleterious effects of aldosterone hypersecretion 
[1].

Surgical adrenalectomy
With regards to the occurrence of AF in PA, the results of the PAPY 
study, a large prospective registry of 107 PA patient and 894 EH 
patients with a median 11.8 years of follow-up reported in 2018 by 
Rossi et al., demonstrated a trend of a higher risk of NOAF among 
the PA patients receiving treatment than the EH patients. In addi-
tion, the surgically treated PA patients had a similar AF-free surviv-
al rate compared to the optimally treated EH patients, while the 
medically treated PA patients still had a higher risk of AF [80]. Hun-
demer et al. performed a retrospective chart review study of 396 
PA patients, of whom 201 received adrenalectomy, and 40092 EH 
patients, and found no significant difference in the risk of NOAF be-
tween the PA patients treated with surgical adrenalectomy and the 
patients with EH [81]. In our recent publication using the large na-
tionwide National Health Insurance Research Database (NHIRD) of 
Taiwan, we found a lower risk of NOAF in 534 PA patients receiving 
surgical adrenalectomy compared to matched EH patients [82].

Mineralocorticoid receptor antagonists
PA patients receiving MRA treatment in the PAPY study had a high-
er risk of AF and decreased AF-free survival [80]. In the retrospec-
tive study of Hundemer et al. consisting of 396 PA and 40092 EH 
patients, 195 of the PA patients received MRAs and had different 
outcomes with regards to NOAF according to post-treatment plas-
ma renin activity level, with a cut-off point of 1 ng/ml/h as a proxy 
for insufficient or sufficient MR blockade. In addition, the PA pa-
tients treated with MRAs with suppressed renin activity and insuffi-
cient MR blockade had a higher risk of NOAF than the EH patients, 
with an adjusted hazard ratio of 2.55. In comparison, the PA patients 
treated with MRAs with increased renin activity and sufficient MR 
blockade did not have a statistically significant difference in the risk 
of NOAF compared to the EH patients [81]. Another larger retrospec-
tive study reported by Hundemer et al. with 602 MRA-treated PA  
patients and 41 853 age-matched EH patients showed a hazard ratio 
of AF of 1.93 compared with the EH patients, and the PA patients with 
insufficient MR blockade had a higher risk of cardiovascular events 
and mortality compared to the PA patients with sufficient blockade 
[83]. Post-treatment renin activity may reflect the adequacy of MR 
blockade and further guide the dosage of MRAs to improve cardio-
vascular outcomes and the risk of NOAF.

These three studies demonstrated a higher risk of NOAF among 
PA patients receiving MRAs. In our recent publication using the 
NHIRD, we also found increased risks of NOAF and major adverse 

cardiovascular and cerebro-cardiovascular events in 1668 PA pa-
tients receiving MRAs compared with matched EH patients [82].

Reversal of left ventricular mass/echocardiographic 
parameters
Rossi et al. found that patients with hyperaldosteronism had in-
creased left ventricular wall thickness and mass and impaired early 
diastolic left ventricular filling indexes compared with EH patients, 
and that these effects could be reversed 1 year after adrenalecto-
my with maintenance therapy after 5 or 10 years of follow-up 
[84, 85]. In addition, Cetena et al. found that both adrenalectomy 
and spironolactone in PA patients had a comparable effect on re-
ducing left ventricular mass after a mean follow-up period of 6.4 
years [64]. Indra et al. showed that adrenalectomy was more effec-
tive in reducing left ventricular mass reduction and left ventricular 
wall thickening and reversing left ventricular cavity enlargement, 
while spironolactone only reduced left ventricular cavity size [86]. 
Our group also previously demonstrated the regression of left ven-
tricular mass in patients receiving adrenalectomy [87]. In addition, 
the improvement after adrenalectomy was seen in both reversal of 
left ventricular geometry and also alterations in myocardial tex-
ture, as shown by increased cyclic variation of integrated backscat-
ter (CVIBS) and decreased plasma carboxy-terminal propeptide of 
procollagen type I (PICP) level [88]. We also previously reported 
that aldosterone-induced left ventricular diastolic dysfunction 
could be reversed after adrenalectomy [89]. Because of the close 
relation between left ventricular structure/function and AF gene-
sis, improvement of left ventricular structure/function after PA tar-
get treatment may further decrease AF burden.

Future perspectives and other hot topics associated 
with AF in PA
KCNJ5 somatic mutations, primary aldosteronism, and 
atrial fibrillation
Several somatic mutations have been found to be highly correlat-
ed or causative for PA [34]. Of notice, KCNJ5 gene mutations, large-
ly seen in aldosterone-producing adrenal adenomas [90, 91], are 
considered to be the most common somatic mutations in PA 
[34, 92]. KCNJ5 mutations have been reported to result in the loss 
of ion selectivity to cause cell membrane depolarization and in-
creased Ca2 +  entry in adrenal glomerulosa cells and to increase al-
dosterone synthesis, and KCNJ5 mutation-related potassium chan-
nelopathy is considered to be an important contributor to the 
pathogenesis of PA [91]. Among PA patients with somatic KCNJ5 
mutations, higher plasma aldosterone level and LVMI [93], young-
er age, and more female gender were reported over PA patients 
without somatic KCNJ5 mutations [94], with higher rate of cure of 
hypertension after adrenalectomy [95]. However, the relations be-
tween somatic KCNJ5 mutation and AF are not clear and further 
studies are warranted.

Subclinical Cushing syndrome, primary aldosteronism, and 
atrial fibrillation
Subclinical Cushing syndrome has been found to co-exist with cer-
tain types of PA [96], and adrenal-cortical tumors have been shown 
to have great heterogeneity and complexity in clinical, morpho-
logical, and molecular presentation [97]. Tang et al. reported 22 
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patients with aldosterone- and cortisol-coproducing adrenal ade-
nomas among 555 PA patients, and found a higher risk of heart dis-
ease including AF compared with 392 adrenal adenoma patients 
[98]. It is not currently known whether Cushing syndrome is corre-
lated with AF. A previous echocardiographic study showed that pa-
tients with Cushing syndrome had a greater reduction in left atrial 
ejection fraction and increased left ventricular mass and wall thick-
ness compared with EH controls, which were corrected after treat-
ment [99]. In addition, iatrogenic Cushing syndrome with exoge-
nous steroid use has been positively associated with the incidence 
of AF [100]. Further studies are warranted to investigate the rela-
tionships among subclinical Cushing syndrome, PA, and AF.

New treatment targeting aldosterone excess
Newer potential alternatives for surgical adrenalectomy with 
CT-guided radiofrequency ablation have shown promising results 
[101], however further long-term outcomes and effects on AF need 
to be confirmed. The investigational new drug LCI699 has been 
shown to inhibit aldosterone synthase and to provide a fair short-
term effect, however long-term data are lacking [102]. Newer gen-
erations of novel non-steroidal MRAs including finerenone (BAY 
94–8862) and esaxerenone (CS-3150) have been evaluated in pre-
clinical and clinical trials and have shown the potential to treat PA, 
however their effects on AF and long-term mortality have not been 
well studied [103]. In addition, for concurrent MRA treatment with 
spironolactone and eplerenone, the optimal dosage has not defin-
itively been established. The current guidelines for spironolactone 
recommend from 12.5 mg per day with slow titration to a maxi-
mum dose of daily 100 mg, and for eplerenone 25 mg twice daily 
with the goals of normalizing serum potassium, reduce blood pres-
sure, and eliminating the vascular, cardiac, and renal effects of al-
dosterone with a minimum number of drugs and side effects [1]. 
Further studies to investigate the optimal dosage of MRAs to pre-
vent AF are also needed. Further studies are also need to elucidate 
whether surgical adrenalectomy can convert pre-existing AF 
among PA patients. For PA patients with sinus rhythm, the risk fac-
tors for developing AF also need to be identified.

Conclusion
PA with excessive aldosterone poses an additional risk of AF as ev-
idenced in clinical trials and basic studies. Further studies are still 
needed to elucidate the relationship between PA and AF. In-depth 
investigations are also needed to study the unique pathogenesis 
of AF in PA patients with a genetic preference or late disease pro-
gression and related complications. Further clinical trials are re-
quired to evaluate the risk of NOAF with different PA treatments 
and the long-term outcomes in patients with different subtypes of 
PA. With a higher level of suspicion and prompt surveys for PA in 
specific clinical scenarios, more precise therapeutic strategies to 
improve the management and outcomes of patients with PA can 
be anticipated.
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