Horm Metab Res 2020; 52(08): 578-587
DOI: 10.1055/a-1132-6223
Review

Clinical and Molecular Genetics of Primary Hyperparathyroidism

William F. Simonds
1   Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
› Author Affiliations
Funding: The Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (ZIA DK043012–18) supported this research.

Abstract

Calcium homeostasis is maintained by the actions of the parathyroid glands, which release parathyroid hormone into the systemic circulation as necessary to maintain the serum calcium concentration within a tight physiologic range. Excessive secretion of parathyroid hormone from one or more neoplastic parathyroid glands, however, causes the metabolic disease primary hyperparathyroidism (HPT) typically associated with hypercalcemia. Although the majority of cases of HPT are sporadic, it can present in the context of a familial syndrome. Mutations in the tumor suppressor genes discovered by the study of such families are now recognized to be pathogenic for many sporadic parathyroid tumors. Inherited and somatic mutations of proto-oncogenes causing parathyroid neoplasia are also known. Future investigation of somatic changes in parathyroid tumor DNA and the study of kindreds with HPT yet lacking germline mutation in the set of genes known to predispose to HPT represent two avenues likely to unmask additional novel genes relevant to parathyroid neoplasia.



Publication History

Received: 09 December 2019

Accepted: 25 February 2020

Article published online:
30 March 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Bilezikian JP. Primary hyperparathyroidism. J Clin Endocrinol Metab 2018; 103: 3993-4004
  • 2 Carafoli E, Krebs J. Why Calcium? How Calcium Became the Best Communicator. The Journal of Biological Chemistry 2016; 291: 20849-20857
  • 3 Sanchez S, Tafforeau P, Ahlberg PE. The humerus of Eusthenopteron: a puzzling organization presaging the establishment of tetrapod limb bone marrow. Proc Biol Sci 2014; 281: 20140299
  • 4 Bouillon R, Suda T. Vitamin D: calcium and bone homeostasis during evolution. Bonekey Rep 2014; 3: 480
  • 5 Lacey DL, Timms E, Tan HL. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165-176
  • 6 Okabe M, Graham A. The origin of the parathyroid gland. Proc Natl Acad Sci USA 2004; 101: 17716-17719
  • 7 Zajac JD, Danks JA. The development of the parathyroid gland: from fish to human. Curr Opin Nephrol Hypertens 2008; 17: 353-356
  • 8 Loretz CA. Extracellular calcium-sensing receptors in fishes. Comp Biochem Physiol A Mol Integr Physiol 2008; 149: 225-245
  • 9 Brown EM. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 2013; 27: 333-343
  • 10 Zhang C, Miller CL, Gorkhali R. et al. Molecular basis of the extracellular ligands mediated signaling by the calcium sensing receptor. Front Physiol 2016; 7: 441
  • 11 Cantley LK, Russell J, Lettieri D. et al. 1,25-Dihydroxyvitamin D3 suppresses parathyroid hormone secretion from bovine parathyroid cells in tissue culture. Endocrinology 1985; 117: 2114-2119
  • 12 Russell J, Lettieri D, Sherwood LM. Suppression by 1,25(OH)2D3 of transcription of the pre-proparathyroid hormone gene. Endocrinology 1986; 119: 2864-2866
  • 13 Silver J, Naveh-Many T, Mayer H. et al. Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest 1986; 78: 1296-1301
  • 14 Silver J, Russell J, Sherwood LM. Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci USA 1985; 82: 4270-4273
  • 15 Bilezikian JP, Cusano NE, Khan AA. et al. Primary hyperparathyroidism. Nat Rev Dis Primers 2016; 2: 16033
  • 16 Insogna KL. Primary hyperparathyroidism. N Engl J Med 2018; 379: 1050-1059
  • 17 Marx SJ. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat Rev Cancer 2005; 5: 367-375
  • 18 Hyde SM, Rich TA, Waguespack SG et al CDC73-Related Disorders. In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2019 ; 2008 Dec 31 [Updated 2018 Apr 26]
  • 19 Simonds WF, James-Newton LA, Agarwal SK. et al. Familial isolated hyperparathyroidism: Clinical and genetic characteristics of thirty-six kindreds. Medicine (Baltimore) 2002; 81: 1-26
  • 20 Guan B, Welch JM, Sapp JC. et al. GCM2-activating mutations in familial isolated hyperparathyroidism. Am J Hum Genet 2016; 99: 1034-1044
  • 21 Marx SJ, Attie MF, Levine MA. et al. The hypocalciuric or benign variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine(Baltimore) 1981; 60: 397-412
  • 22 Harris TJ, McCormick F. The molecular pathology of cancer. Nat Rev Clin Oncol 2010; 7: 251-265
  • 23 Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820-823
  • 24 Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer 2001; 1: 157-162
  • 25 Arnold A, Agarwal SK, Thakker RV. Familial States of Primary Hyperparathyroidism. In: Bilezikian JP, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 9th ed. Washington, DC: American Society for Bone and Mineral Research; 2019: 629–638
  • 26 Schussheim DH, Skarulis MC, Agarwal SK. et al. Multiple endocrine neoplasia type 1: new clinical and basic findings. Trends Endocrinol Metab 2001; 12: 173-178
  • 27 Chandrasekharappa SC, Guru SC, Manickam P. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276: 404-407
  • 28 Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24: T119-T134
  • 29 Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 2008; 29: 22-32
  • 30 Miedlich S, Krohn K, Lamesch P. et al. Frequency of somatic MEN1 gene mutations in monoclonal parathyroid tumours of patients with primary hyperparathyroidism. Eur J Endocrinol 2000; 143: 47-54
  • 31 Uchino S, Noguchi S, Sato M. et al. Screening of the Men1 gene and discovery of germ-line and somatic mutations in apparently sporadic parathyroid tumors. Cancer Res 2000; 60: 5553-5557
  • 32 Scarpelli D, D'Aloiso L, Arturi F. et al. Novel somatic MEN1 gene alterations in sporadic primary hyperparathyroidism and correlation with clinical characteristics. J Endocrinol Invest 2004; 27: 1015-1021
  • 33 Vierimaa O, Villablanca A, Alimov A. et al. Mutation analysis of MEN1, HRPT2, CASR, CDKN1B, and AIP genes in primary hyperparathyroidism patients with features of genetic predisposition. J Endocrinol Invest 2009; 32: 512-518
  • 34 Heppner C, Kester MB, Agarwal SK. et al. Somatic mutation of the MEN1 gene in parathyroid tumours. Nature Genet 1997; 16: 375-378
  • 35 Cromer MK, Starker LF, Choi M. et al. Identification of somatic mutations in parathyroid tumors using whole-exome sequencing. J Clin Endocrinol Metab 2012; 97: E1774-E1781
  • 36 Newey PJ, Nesbit MA, Rimmer AJ. et al. Whole-exome sequencing studies of nonhereditary (sporadic) parathyroid adenomas. J Clin Endocrinol Metab 2012; 97: E1995-2005
  • 37 Di Meo G, Sgaramella LI, Ferraro V. et al. Parathyroid carcinoma in multiple endocrine neoplasm type 1 syndrome: case report and systematic literature review. Clin Exp Med 2018; 18: 585-593
  • 38 Costa-Guda J, Imanishi Y, Palanisamy N. et al. Allelic imbalance in sporadic parathyroid carcinoma and evidence for its de novo origins. Endocrine 2013; 44: 489-495
  • 39 Yu W, McPherson JR, Stevenson M. et al. Whole-exome sequencing studies of parathyroid carcinomas reveal novel PRUNE2 mutations, distinctive mutational spectra related to APOBEC-catalyzed DNA mutagenesis and mutational enrichment in kinases associated with cell migration and invasion. J Clin Endocrinol Metab 2015; 100: E360-364
  • 40 Pandya C, Uzilov AV, Bellizzi J. et al. Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI Insight 2017; 2: e92061
  • 41 Jackson CE, Norum RA, Boyd SB. et al. Hereditary hyperparathyroidism and multiple ossifying jaw fibromas: a clinically and genetically distinct syndrome. Surgery 1990; 108: 1006-1012
  • 42 Bradley KJ, Hobbs MR, Buley ID. et al. Uterine tumours are a phenotypic manifestation of the hyperparathyroidism-jaw tumour syndrome. J Intern Med 2005; 257: 18-26
  • 43 Chen JD, Morrison C, Zhang C. et al. Hyperparathyroidism-jaw tumour syndrome. J Intern Med 2003; 253: 634-642
  • 44 Mehta A, Patel D, Rosenberg A. et al. Hyperparathyroidism-jaw tumor syndrome: Results of operative management. Surgery 2014; 156: 1315-1324 discussion 1324–1315
  • 45 Carpten JD, Robbins CM, Villablanca A. et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002; 32: 676-680
  • 46 Newey PJ, Bowl MR, Thakker RV. Parafibromin–functional insights. J Intern Med 2009; 266: 84-98
  • 47 Domingues R, Tomaz RA, Martins C. et al. Identification of the first germline HRPT2 whole-gene deletion in a patient with primary hyperparathyroidism. Clin Endocrinol 2012; 76: 33-38
  • 48 Cascon A, Huarte-Mendicoa CV, Javier Leandro-Garcia L. et al. Detection of the first gross CDC73 germline deletion in an HPT-JT syndrome family. Gene Chromosome Cancer 2011; 50: 922-929
  • 49 Bricaire L, Odou MF, Cardot-Bauters C. et al. Frequent large germline HRPT2 deletions in a French National cohort of patients with primary hyperparathyroidism. J Clin Endocrinol Metab 2013; 98: E403-E408
  • 50 Guarnieri V, Seaberg RM, Kelly C. et al. Large intragenic deletion of CDC73 (exons 4-10) in a three-generation hyperparathyroidism-jaw tumor (HPT-JT) syndrome family. BMC Med Genet 2017; 18: 83
  • 51 Teh BT, Farnebo F, Kristoffersson U. et al. Autosomal dominant primary hyperparathyroidism and jaw tumor syndrome associated with renal hamartomas and cystic kidney disease: linkage to 1q21–q32 and loss of the wild type allele in renal hamartomas. J Clin Endocrinol Metab 1996; 81: 4204-4211
  • 52 Vocke CD, Ricketts CJ, Ball MW. et al. CDC73 Germline mutation in a family with mixed epithelial and stromal tumors. Urology 2019; 124: 91-97
  • 53 Krebs LJ, Shattuck TM, Arnold A. HRPT2 mutational analysis of typical sporadic parathyroid adenomas. J Clin Endocrinol Metab 2005; 90: 5015-5017
  • 54 Howell VM, Haven CJ, Kahnoski K. et al. HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet 2003; 40: 657-663
  • 55 Cetani F, Pardi E, Borsari S. et al. Genetic analyses of the HRPT2 gene in primary hyperparathyroidism: germline and somatic mutations in familial and sporadic parathyroid tumors. J Clin Endocrinol Metab 2004; 89: 5583-5591
  • 56 Shattuck TM, Valimaki S, Obara T. et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med 2003; 349: 1722-1729
  • 57 Cetani F, Pardi E, Borsari S. et al. Genetic analyses of the HRPT2 gene in primary hyperparathyroidism: germline and somatic mutations in familial and sporadic parathyroid tumors. J Clin Endocrinol Metab 2004; 89: 5583-5591
  • 58 van der Tuin K, Tops CMJ, Adank MA. et al. CDC73-related disorders: Clinical manifestations and case detection in primary hyperparathyroidism. J Clin Endocrinol Metab 2017; 102: 4534-4540
  • 59 Pellegata NS, Quintanilla-Martinez L, Siggelkow H. et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006; 103: 15558-15563
  • 60 Alrezk R, Hannah-Shmouni F. Stratakis CAMEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer 2017; 24: T195-T208
  • 61 Fritz A, Walch A, Piotrowska K. et al. Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res 2002; 62: 3048-3051
  • 62 Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 2009; 94: 1826-1834
  • 63 Georgitsi M, Raitila A, Karhu A. et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 2007; 92: 3321-3325
  • 64 Molatore S, Marinoni I, Lee M. et al. A novel germline CDKN1B mutation causing multiple endocrine tumors: clinical, genetic and functional characterization. Hum Mutat 2010; 31: E1825-1835
  • 65 Malanga D, De Gisi S, Riccardi M. et al. Functional characterization of a rare germline mutation in the gene encoding the cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with multiple endocrine neoplasia-like phenotype. Eur J Endocrinol 2012; 166: 551-560
  • 66 Occhi G, Regazzo D, Trivellin G. et al. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet 2013; 9: e1003350
  • 67 Tonelli F, Giudici F, Giusti F. et al. A heterozygous frameshift mutation in exon 1 of CDKN1B gene in a patient affected by MEN4 syndrome. Eur J Endocrinol 2014; 171: K7-K17
  • 68 Costa-Guda J, Marinoni I, Molatore S. et al. Somatic mutation and germline sequence abnormalities in CDKN1B, encoding p27Kip1, in sporadic parathyroid adenomas. J Clin Endocrinol Metab 2011; 96: E701-E706
  • 69 Belar O, De La Hoz C, Perez-Nanclares G. et al. Novel mutations in MEN1, CDKN1B and AIP genes in patients with multiple endocrine neoplasia type 1 syndrome in Spain. Clinical endocrinology 2012; 76: 719-724
  • 70 Elston MS, Meyer-Rochow GY, Dray M. et al. Early Onset Primary Hyperparathyroidism Associated with a Novel Germline Mutation in CDKN1B. Case Rep Endocrinol. 2015 2015.
  • 71 Frederiksen A, Rossing M, Hermann P. et al. Clinical Features of Multiple Endocrine Neoplasia Type 4 - Novel pathogenic variant and review of published cases. J Clin Endocrinol Metab 2019; 104: 3637-3646
  • 72 Costa-Guda J, Arnold A. Genetic and epigenetic changes in sporadic endocrine tumors: parathyroid tumors. Mol Cell Endocrinol 2014; 386: 46-54
  • 73 Simonds WF, Robbins CM, Agarwal SK. et al. Familial isolated hyperparathyroidism is rarely caused by germline mutation in HRPT2, the gene for the hyperparathyroidism-jaw tumor syndrome. J Clin Endocrinol Metab 2004; 89: 96-102
  • 74 Warner J, Epstein M, Sweet A. et al. Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications. J Med Genet 2004; 41: 155-160
  • 75 Cetani F, Pardi E, Ambrogini E. et al. Genetic analyses in familial isolated hyperparathyroidism: implication for clinical assessment and surgical management. Clin Endocrinol 2006; 64: 146-152
  • 76 Pontikides N, Karras S, Kaprara A. et al. Genetic basis of familial isolated hyperparathyroidism: a case series and a narrative review of the literature. J Bone Miner Metab 2014; 32: 351-366
  • 77 Baumber L, Tufarelli C, Patel S. et al. Identification of a novel mutation disrupting the DNA binding activity of GCM2 in autosomal recessive familial isolated hypoparathyroidism. J Med Genet 2005; 42: 443-448
  • 78 Canaff L, Zhou X, Mosesova I. et al. Glial cells missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat 2009; 30: 85-92
  • 79 Cetani F, Pardi E, Aretini P. et al. Whole exome sequencing in familial isolated primary hyperparathyroidism. J Endocrinol Invest 2019; 43: 231-245
  • 80 Riccardi A, Aspir T, Shen L. et al. Analysis of activating GCM2 sequence variants in sporadic parathyroid adenomas. J Clin Endocrinol Metab 2019; 104: 1948-1952
  • 81 Papadopoulou A, Gole E, Melachroinou K. et al. Identification and functional characterization of a calcium-sensing receptor mutation in an infant with familial hypocalciuric hypercalcemia. J Clin Res Pediatr Endocrinol 2016; 8: 341-346
  • 82 Brown EM. Familial hypocalciuric hypercalcemia and other disorders with resistance to extracellular calcium. Endocrinol Metab Clin North Am 2000; 29: 503-522
  • 83 Brown EM. Mutations in the calcium-sensing receptor and their clinical implications. HormRes 1997; 48: 199-208
  • 84 Corrado KR, Andrade SC, Bellizzi J. et al. Polyclonality of parathyroid tumors in neonatal severe hyperparathyroidism. J Bone Miner Res 2015; 30: 1797-1802
  • 85 Farnebo F, Enberg U, Grimelius L. et al. Tumor-specific decreased expression of calcium sensing receptor messenger ribonucleic acid in sporadic primary hyperparathyroidism. J Clin Endocrinol Metab 1997; 82: 3481-3486
  • 86 Hosokawa Y, Pollak MR, Brown EM. et al. Mutational analysis of the extracellular Ca(2+)-sensing receptor gene in human parathyroid tumors. J Clin Endocrinol Metab 1995; 80: 3107-3110
  • 87 Cetani F, Pinchera A, Pardi E. et al. No evidence for mutations in the calcium-sensing receptor gene in sporadic parathyroid adenomas. J Bone Miner Res 1999; 14: 878-882
  • 88 Nesbit MA, Hannan FM, Howles SA. et al. Mutations affecting G-protein subunit alpha11 in hypercalcemia and hypocalcemia. N Engl J Med 2013; 368: 2476-2486
  • 89 Gorvin CM, Cranston T, Hannan FM. et al. A G-protein Subunit-alpha11 Loss-of-Function Mutation, Thr54Met, Causes Familial Hypocalciuric Hypercalcemia Type 2 (FHH2). J Bone Miner Res 2016; 31: 1200-1206
  • 90 Nesbit MA, Hannan FM, Howles SA. et al. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat Genet 2013; 45: 93-97
  • 91 Hendy GN, Canaff L, Newfield RS. et al. Codon Arg15 mutations of the AP2S1 gene: common occurrence in familial hypocalciuric hypercalcemia cases negative for calcium-sensing receptor (CASR) mutations. J Clin Endocrinol Metab 2014; 99: E1311-E1315
  • 92 Hannan FM, Howles SA, Rogers A. et al. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects. Hum Mol Genet 2015; 24: 5079-5092
  • 93 Vargas-Poussou R, Mansour-Hendili L, Baron S. et al. Familial hypocalciuric hypercalcemia types 1 and 3 and primary hyperparathyroidism: Similarities and differences. J Clin Endocrinol Metab 2016; 101: 2185-2195
  • 94 Wells SA, Santoro M. Targeting the RET pathway in thyroid cancer. Clin Cancer Res 2009; 15: 7119-7123
  • 95 Frank-Raue K, Raue F. Hereditary medullary thyroid cancer genotype-phenotype correlation. Recent Results Cancer Res 2015; 204: 139-156
  • 96 Eng C, Clayton D, Schuffenecker I. et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 1996; 276: 1575-1579
  • 97 Arnold A, Kim HG, Gaz RD. et al. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest 1989; 83: 2034-2040
  • 98 Rosenberg CL, Kim HG, Shows TB. et al. Rearrangement and overexpression of D11S287E, a candidate oncogene on chromosome 11q13 in benign parathyroid tumors. Oncogene 1991; 6: 449-453
  • 99 Motokura T, Bloom T, Kim HG. et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 1991; 350: 512-515
  • 100 Imanishi Y, Hosokawa Y, Yoshimoto K. et al. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of cyclin D1 in transgenic mice. J Clin Invest 2001; 107: 1093-1102
  • 101 Hsi ED, Zukerberg LR, Yang WI. et al. Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study. J Clin Endocrinol Metab 1996; 81: 1736-1739
  • 102 Hemmer S, Wasenius VM, Haglund C. et al. Deletion of 11q23 and cyclin D1 overexpression are frequent aberrations in parathyroid adenomas. Am J Pathol 2001; 158: 1355-1362
  • 103 Tominaga Y, Tsuzuki T, Uchida K. et al. Expression of PRAD1/cyclin D1, retinoblastoma gene products, and Ki67 in parathyroid hyperplasia caused by chronic renal failure versus primary adenoma. Kidney Int 1999; 55: 1375-1383
  • 104 Vasef MA, Brynes RK, Sturm M. et al. Expression of cyclin D1 in parathyroid carcinomas, adenomas, and hyperplasias: a paraffin immunohistochemical study. Mod Pathol 1999; 12: 412-416
  • 105 Hosokawa Y, Tu T, Tahara H. et al. Absence of cyclin D1/PRAD1 point mutations in human breast cancers and parathyroid adenomas and identification of a new cyclin D1 gene polymorphism. Cancer Lett 1995; 93: 165-170
  • 106 Wei Z, Sun B, Wang ZP. et al. Whole-exome sequencing identifies novel recurrent somatic mutations in sporadic parathyroid adenomas. Endocrinology 2018; 159: 3061-3068
  • 107 Yap DB, Chu J, Berg T. et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 2011; 117: 2451-2459
  • 108 Li Y, Cui W, Woodroof JM. et al. Extranodal B cell lymphoma with prominent spindle cell features arising in uterus and in maxillary sinus: Report of two cases and literature review. Ann Clin Lab Sci 2016; 46: 213-218
  • 109 Sanpaolo E, Miroballo M, Corbetta S. et al. EZH2 and ZFX oncogenes in malignant behaviour of parathyroid neoplasms. Endocrine 2016; 54: 55-59
  • 110 Soong CP, Arnold A. Recurrent ZFX mutations in human sporadic parathyroid adenomas. Oncoscience 2014; 1: 360-366
  • 111 Arnold A, Soong CP. New role for ZFX in oncogenesis. Cell Cycle 2014; 13: 3465-3466
  • 112 Palanisamy N, Imanishi Y, Rao PH. et al. Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. J Clin Endocrinol Metab 1998; 83: 1766-1770
  • 113 Agarwal SK, Schrock E, Kester MB. et al. Comparative genomic hybridization analysis of human parathyroid tumors. Cancer Genet Cytogenet 1998; 106: 30-36
  • 114 Farnebo F, Kytölä S, Teh BT. et al. Alternative genetic pathways in parathyroid tumorigenesis. J Clin Endocrinol Metab 1999; 84: 3775-3780
  • 115 Kytölä S, Farnebo F, Obara T. et al. Patterns of chromosomal imbalances in parathyroid carcinomas. Am J Pathol 2000; 157: 579-586
  • 116 Garcia JL, Tardio JC, Gutierrez NC. et al. Chromosomal imbalances identified by comparative genomic hybridization in sporadic parathyroid adenomas. Eur J Endocrinol 2002; 146: 209-213