Sportphysio 2020; 08(02): 67-77
DOI: 10.1055/a-1130-9585
Focus
Vertiefung

Optimale Knochenbelastung zur Prävention und Therapie von Stressfrakturen

Stuart J. Warden

Vor allem Läufer kennen das Problem: völlig unvermittelt bekommen sie Beschwerden, die so stark sind, dass sie nicht mehr weitermachen können. Im schlimmsten Fall leiden sie an den schmerzhaften Folgen einer Stressfraktur. Wer im Training die richtigen Reize setzt, kann das Risiko für derartige Verletzungen deutlich verringern.



Publication History

Article published online:
08 May 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Armstrong III DW, Rue J-PH, Wilckens JH. et al. Stress fracture injury in young military men and women. Bone 2004; 35: 806-816
  • 2 Beck TJ, Ruff CB, Shaffer RA. et al. Stress fracture in military recruits: Gender differences in muscle and bone susceptibility factors. Bone 2000; 27: 437-444
  • 3 Beck TJ, Ruff CB, Mourtada FA. et al. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U. S. Marine Corps recruits. J Bone Miner Res 1996; 11: 645-653
  • 4 Bennell KL, Malcolm SA, Thomas SA. et al. Risk factors for stress fractures in track and field athletes: A twelve-month prospective study. American Journal of Sports Medicine 1996; 24: 810-818
  • 5 Blanch P, Gabbett TJ. Has the athlete trained enough to return to play safely? The acute:chronic workload ratio permits clinicians to quantify a player’s risk of subsequent injury. British Journal of Sports Medicine 2016; 50: 471-475
  • 6 Buist I, Bredeweg SW, van Mechelen W. et al. No effect of a graded training program on the number of running-related injuries in novice runners: A randomized controlled trial. Am J Sports Med 2008; 36: 33-39
  • 7 Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone 2002; 30: 781-786
  • 8 Chan ZYS, Zhang JH, Au IPH. et al. Gait retraining for the reduction of injury occurrence in novice distance runners: 1-year follow-up of a randomized controlled trial. Am J Sports Med 2018; 46: 388-395
  • 9 Clansey AC, Hanlon M, Wallace ES. et al. Effects of fatigue on running mechanics associated with tibial stress fracture risk. Med Sci Sports Exerc 2012; 44: 1917-1923
  • 10 Dixon SJ, Collop AC, Batt ME. Surface effects on ground reaction forces and lower extremity kinematics in running. Med Sci Sports Exerc 2000; 32: 1919-1926
  • 11 Edwards WB. Modeling overuse injuries in sport as a mechanical fatigue phenomenon. Exerc Sport Sci Rev 2018; 46: 224-231
  • 12 Fyhrie DP, Milgrom C, Hoshaw SJ. et al. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann Biomed Eng 1998; 26: 660-665
  • 13 Gabbett TJ. The training-injury prevention paradox: Should athletes be training smarter and harder?. British Journal of Sports Medicine 2016; 50: 273-280
  • 14 Gabbett TJ, Whyte DG, Hartwig TB. et al. The relationship between workloads, physical performance, injury and illness in adolescent male football players. Sports Med 2014; 44: 989-1003
  • 15 Gardner LI, Dziados JE, Jones BH. et al. Prevention of lower extremity stress fractures: A controlled trial of a shock absorbing insole. Am J Public Health 1988; 78: 1563-1567
  • 16 Gottschall JS, Kram R. Ground reaction forces during downhill and uphill running. J Biomech 2005; 38: 445-452
  • 17 Hamill J, Bates BT, Knutzen KM. et al. Variations in ground reaction force parameters at different running speeds. Human Movement Science 1983; 2: 47-56
  • 18 Hoffman JR, Chapnik L, Shamis A. et al. The effect of leg strength on the incidence of lower extremity overuse injuries during military training. Mil Med 1999; 164: 153-156
  • 19 Kannus P, Haapasalo H, Sankelo M. et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 1995; 123: 27-31
  • 20 Lieberman DE, Venkadesan M, Werbel WA. et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 2010; 463: 531-535
  • 21 Marti B, Vader JP, Minder CE. et al. On the epidemiology of running injuries. The 1984 Bern Grand-Prix study. Am J Sports Med 1988; 16: 285-294
  • 22 Mercer JA, Bates BT, Dufek JS. et al. Characteristics of shock attenuation during fatigued running. J Sports Sci 2003; 21: 911-919
  • 23 Milgrom C, Finestone A, Segev S. et al. Are overground or treadmill runners more likely to sustain tibial stress fracture?. Br J Sports Med 2003; 37: 160-163
  • 24 Milgrom C, Radeva-Petrova DR, Finestone A. et al. The effect of muscle fatigue on in vivo tibial strains. J Biomech 2007; 40: 845-850
  • 25 Pollard CD, Ter Har JA, Hannigan JJ. et al. Influence of maximal running shoes on biomechanics before and after a 5k run. Orthop J Sports Med 2018; 6: 2325967118775720
  • 26 Ridge ST, Olsen MT, Bruening DA. et al. Walking in minimalist shoes is effective for strengthening foot muscles. Med Sci Sports Exerc 2019; 51: 104-113
  • 27 Rizzone KH, Ackerman KE, Roos KG. et al. The epidemiology of stress fractures in collegiate student-athletes, 2004–2005 through 2013–2014 academic years. J Athl Train 2017; 52: 966-975
  • 28 Robling AG, Burr DB, Turner CH. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J Bone Miner Res 2000; 15: 1596-1602
  • 29 Robling AG, Hinant FM, Burr DB. et al. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 2002; 17: 1545-1554
  • 30 Saxon LK, Robling AG, Alam I. et al. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 2005; 36: 454-464
  • 31 Tenforde AS, Sainani KL, Carter Sayres L. et al. Participation in ball sports may represent a prehabilitation strategy to prevent future stress fractures and promote bone health in young athletes. PM & R 2015; 7: 222-225
  • 32 Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 2003; 31: 45-50
  • 33 Vlachopoulos D, Barker AR, Ubago-Guisado E. et al. A 9-month jumping intervention to improve bone geometry in adolescent male athletes. Med Sci Sports Exerc 2018; 50: 2544-2554
  • 34 Warden SJ, Burr DB, Brukner PD. Stress fractures: Pathophysiology, epidemiology, and risk factors. Curr Osteoporos Rep 2006; 4: 103-109
  • 35 Warden SJ, Hurst JA, Sanders MS. et al. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res 2005; 20: 809-816
  • 36 Warden SJ, Davis IS, Fredericson M. Management and prevention of bone stress injuries in long-distance runners. J Orthop Sports Phys Ther 2014; 44: 749-765
  • 37 Warden SJ, Mantila Roosa SM, Kersh ME. et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A 2014; 111: 5337-5342
  • 38 Weeks BK, Beck BR. The BPAQ: A bone-specific physical activity assessment instrument. Osteoporos Int 2008; 19: 1567-1577
  • 39 Wright AA, Taylor JB, Ford KR. et al. Risk factors associated with lower extremity stress fractures in runners: A systematic review with meta-analysis. Br J Sports Med 2015; 49: 1517-1523