Platelet Purinergic Receptors in Thrombosis and Inflammation

Christian Gachet1 Beatrice Hechler1

1 Etablissement Français du Sang (EFS) Grand Est, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg Cedex, France

Address for correspondence Christian Gachet, MD, PhD, Etablissement Français du Sang-Grand Est, INSERM UMR_S1255, 10, rue Spielmann, BP 36, F-67065 Strasbourg Cedex, France (e-mail: christian.gachet@efs.sante.fr).

Abstract

It took approximately 40 years from the seminal identification of adenosine diphosphate (ADP) as the factor R, an agent derived from red blood cells inducing platelet adhesion to glass, to the completion of the repertoire of its receptors on platelets and its importance in haemostasis and thrombosis. ADP, either derived from red blood cells or released by platelets themselves, stimulates platelets via two G protein-coupled receptors, P2Y1 and P2Y12. In addition, adenosine triphosphate, also contained in the platelet dense granules, activates the P2X1 cation channel. Each of these receptors plays a specific role during platelet activation and aggregation, with relevance to haemostasis, thrombosis and various inflammatory processes where platelets are involved including chronic responses such as atherosclerosis or acute responses such as sepsis, endotoxaemia or allergic asthma. Finally, platelets also express P2Y14, a receptor activated by released uridine diphosphate glucose. Although devoid of any known role in haemostasis, this receptor seems to play a specific role in neutrophil chemotaxis.

Keywords
► nucleotides
► platelets
► thrombosis
► inflammation
► atherosclerosis

Introduction

Sixty years ago now, adenosine diphosphate (ADP) was identified as a factor released from erythrocytes which influenced platelet adhesiveness to glass1 and induced platelet aggregation.2 The crucial role of ADP as a mediator of platelet activation was rapidly recognized in the physiological process of haemostasis and in the development and extension of arterial thrombosis.3

ADP and adenosine triphosphate (ATP) are stored at a very high concentration in platelet dense granules and released upon activation of platelets by strong agonists such as thrombin and/or collagen. Released ADP is an essential secondary agonist, which amplifies most of the platelet responses and contributes to the stabilisation of the thrombus.4 Platelet stimulation by ADP leads to a transient increase in free cytoplasmic Ca2+ and inhibition of adenylyl cyclase activity. In addition, ATP induces an extremely rapid influx of Ca2+ from the extracellular medium associated to platelet shape change. We know for years now that three different P2 receptors mediate these effects of adenine nucleotides on platelets: two G protein-coupled receptors stimulated by ADP, P2Y1 and P2Y12, and the P2X1 cation channel activated by ATP. Each of these receptors plays a specific role during platelet activation and aggregation, with relevance to haemostasis, thrombosis and various inflammatory processes where platelets are involved including chronic responses such as atherosclerosis or acute responses such as sepsis, endotoxaemia or allergic asthma. Finally, platelets also express P2Y14, a receptor activated by released uridine diphosphate glucose. Although devoid of any known role in haemostasis, this receptor seems to play a specific role in neutrophil chemotaxis.

© 2020 Georg Thieme Verlag KG Stuttgart · New York
ISSN 0720-9355.
The Platelet P2Y1 Receptor

The P2Y1 receptor is broadly expressed in many cells and tissues. Its presence and role in platelets were established by the detection of mRNA in megakaryoblastic cell lines and by pharmacological studies using selective P2Y1 antagonists. ADP is the preferred natural agonist of the P2Y1 receptor, while ATP behaves as an antagonist in platelets or as a poor partial agonist in heterologous transfected or reconstituted systems, depending on the receptor density. The P2Y1 receptor is coupled to Gq and Ca2+ signalling. The changes in cytosolic Ca2+ concentration support the activation of the calcium and diacylglycerol-regulated guanine-nucleotide exchange factor 1 (CalDAG-GEFI), resulting in rapid and reversible activation of the small RAP1 GTPase and integrin αIIbβ3, responsible for platelet shape change and weak and transient aggregation in response to ADP. Platelets express approximately 150 P2Y1 receptors per cell, which is very low and probably explains why the signal induced by P2Y1 activation is weak as compared with the signals of other Gq-coupled receptors. To date, no P2Y1-deficient patients have been identified.

The Platelet P2Y12 Receptor

The P2Y12 receptor, cloned in 2001, is responsible for completion of the platelet aggregation initiated by the P2Y1 receptor in response to ADP, as well as for the role played by ADP in the amplification of aggregation, secretion and stabilisation of platelet aggregates induced by strong agonists such as thrombin, collagen or TxA2. It is activated by ADP, while ATP and a wide range of its triphosphate analogues behave as antagonists. Platelets express approximately 400 copies of the P2Y12 receptor per cell. Owing its central role in the amplification of platelet responses to any stimulus, it is the molecular target of potent antiplatelet drugs including the thienopyridine compounds clopidogrel and prasugrel, which are prodrugs, and the direct antagonists ticagrelor and cangrelor. The tissue distribution of this receptor was long thought to be restricted to platelets and sub-regions of the brain. Further studies later revealed its expression and functions in microglial cells, vascular smooth muscle cells (VSMCs), dendritic cells (DCs), macrophages and as yet unspecified leukocytes and also bladder smooth muscle cells. In terms of signalling, the P2Y12 receptor activates a Gαq/11 G-protein subtype, responsible for the activation of two phosphoinositide 3-kinase (PI3-K) isoforms (PI3-K p110β and p110 gamma) that regulate αIIbβ3 activation via activation of the serine–threonine protein kinase B/Akt (PKB/Akt) and the small GTPase RAP1 and the downward regulation of the RAP1 RAP-GAP RASA3 inhibitor. Gαq/11 also inhibits platelet adenylyl cyclase, which facilitates platelet activation.

Several patients have been identified with congenital P2Y12 receptor defects associated with quantitative or qualitative abnormalities of the receptor and responsible for deficiencies of ADP-induced platelet activation, leading to mild to severe bleeding diathesis which underscores the importance of this receptor in haemostasis.

The Platelet P2X1 Receptor

The third member of the platelet P2 receptor panoply is the ligand-gated cation channel P2X1, responsible for a fast Ca2+ entry induced by ATP. Pharmacological studies using specific P2X1 ligands and P2X1−/− mice have shown that this receptor triggers transient shape change without causing platelet aggregation in response to ATP and participates in collagen- and shear-induced aggregation. No P2X1−/− mice have been clearly identified to date. A mutation in the P2X1 sequence has been reported in a patient with a severe bleeding disorder, but without firm demonstration of a causal link between the mutation and the bleeding tendency.

The Platelet P2 Receptors in Thrombosis

So far, only the P2Y12 receptor is an established target for antithrombotic drugs in clinical use. The P2Y1 and P2X1 receptors are also involved in experimental thrombosis and are at a preclinical stage of evaluation as potential targets for new antiplatelet agents.

The Platelet P2Y12 Receptor in Thrombosis

The cornerstone of treatment of ischemic coronary syndromes is the dual antiplatelet therapy using aspirin and P2Y12-targeting drugs. Indeed, the central role of the P2Y12 receptor in platelet activation and the growth and stabilisation of a thrombus makes it a very important molecular target for antithrombotic agents. It is so far the only P2 receptor subtype to be an established target for antiplatelet drugs in clinical use and the major target to treat all kinds of arterial ischemic diseases. Active metabolites of the orally administered thienopyridine prodrugs (clopidogrel and prasugrel) covalently bind to the P2Y12 receptor while the direct-acting P2Y12 antagonists, ticagrelor, which is an oral antagonist, and cangrelor, an intravenous direct antagonist, reversibly bind the receptor and inhibit ADP binding. All these drugs are under clinical use for the treatment and prevention of thrombotic events in acute coronary syndromes. However, one limitation of targeting the P2Y12 receptor, whatever the drug, relates to the bleeding risk, which increases with the degree of inhibition of P2Y12-dependent platelet functions. The crystal structure of P2Y12 revealed how this receptor behaves when it binds agonists and antagonists. This should provide valuable insights into the development of improved P2Y12 antagonists.

The Platelet P2Y1 Receptor in Thrombosis

Although the P2Y1 receptor plays only a modest role in platelet activation, it plays a central role in experimental arterial thrombosis. This was shown using P2Y1−/− mice in various models including systemic thromboembolism either induced by infusion of a mixture of collagen and adrenaline or tissue factor, or localised thrombosis after ferric chloride- or laser-induced injury of mesenteric arteries. Among selective P2Y1 receptor antagonists, MRS2500 has so far the highest affinity for P2Y1 and is able to inhibit thrombosis in treated...
animals. However, the limited bioavailability of the compound prevents its use in long-term treatment, pointing to the need of developing novel P2Y1 receptor antagonists with an improved pharmacokinetic profile. The resolution of the X-ray crystal structure of the P2Y1 receptor should open up new possibilities in this field. Of note, inhibition of the P2Y1 receptor results in a moderate prolongation of the bleeding time in mice, which is a definite safety advantage over inhibition of the P2Y12 receptor. However, so far, no candidate drug has really emerged from any pharmaceutical company involved in antithrombotic drug development.

The Platelet P2X1 Receptor in Thrombosis

The generation of P2X1^{−/−} mice helped to reveal the important role of this receptor in arterial thrombosis. P2X1^{−/−} mice display resistance to systemic thromboembolism induced by injection of a mixture of collagen and adrenaline and to localized arterial thrombosis triggered by laser-induced injury of mesenteric arteries. These mice display also resistance to tissue factor-induced systemic thromboembolism, i.e., in a thrombin-dependent system (unpublished data). Interestingly, P2X1^{−/−} mice have no increase in their bleeding time compared with wild-type animals, indicating that they display normal haemostasis. This receptor is therefore a potential new target for safe antiplatelet agents. However, due to the limited bioavailability and selectivity of currently existing P2X1 antagonists, the development of novel selective P2X1 antagonists is warranted for the preclinical evaluation of this receptor as a target for novel antiplatelet agents.

The Platelet P2 Receptors in Inflammation

Platelets play an important role in modulating inflammatory responses through the release of inflammatory mediators or compounds with trophic activity and exposure of P-selectin, CD40 and CD40 ligand (CD40L). These molecules allow interaction of platelets with leukocytes and their subsequent activation with the release of a range of inflammatory cytokines and exposure of tissue factor. Therefore, in addition to acting as antithrombotic drugs, antagonists and inhibitors of the platelet P2 receptors have anti-inflammatory effects, which might be relevant to various diseases such as atherosclerosis, restenosis, endotoxaemia and sepsis, or allergic asthma. In addition, besides platelets, P2Y1, P2Y12 and P2Y14 receptors, expressed by cells of the immune system and by vascular cells, are also directly involved in the modulation of inflammation and in immune responses during thrombus formation, independently of platelet-related processes (<table 1> Table 1).

The P2Y12 Receptor

Studies in mice or patients receiving clopidogrel have highlighted the contribution of the platelet P2Y12 receptor to P-selectin and CD40L exposure, formation of platelet–leukocyte aggregates, tissue factor exposure and release of various inflammatory mediators (tumour necrosis factor–α, C-reactive protein). These inflammatory events might be relevant for the role played by the platelet P2Y12 receptor in restenosis, atherosclerosis and transplant atherosclerosis. An additional contribution from the P2Y12 receptor of VSMCs and leukocytes, including DCs, possibly through P2Y12-dependent migration properties has been suggested. In the context of allergic asthma, in which platelet activation is required for the recruitment of inflammatory cells to the lungs and remodeling of the airway wall, divergent results have been reported concerning the role of the platelet P2Y12 receptor. The pro-asthmatic action of leukotriene LTE4 in mice could require the P2Y12 receptor through a mechanism yet to be identified. Further evidence of the involvement of the P2Y12 platelet

<table>
<thead>
<tr>
<th>Inflammatory disease</th>
<th>Cell type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerosis</td>
<td>P2Y<sub>12</sub> Platelets</td>
<td>Li et al (2012)<sup>40</sup>; West et al (2014)<sup>41</sup></td>
</tr>
<tr>
<td></td>
<td>VSMCs</td>
<td>Li et al (2012)<sup>40</sup>; West et al (2014)<sup>41</sup></td>
</tr>
<tr>
<td></td>
<td>P2Y<sub>1</sub> Endothelial cells</td>
<td>Hechler et al (2008)<sup>51</sup>; Zerr et al (2011)<sup>50</sup></td>
</tr>
<tr>
<td>Restenosis</td>
<td>P2Y<sub>12</sub> Platelets</td>
<td>Evans et al (2009)<sup>31</sup></td>
</tr>
<tr>
<td>Transplant atherosclerosis</td>
<td>P2Y<sub>12</sub> VSMCs</td>
<td>Abele et al (2009)<sup>42</sup>; Harada et al (2011)<sup>43</sup></td>
</tr>
<tr>
<td></td>
<td>Leukocytes</td>
<td>Abele et al (2009)<sup>42</sup>; Harada et al (2011)<sup>43</sup></td>
</tr>
<tr>
<td>Intimal hyperplasia</td>
<td>P2Y<sub>1</sub> Platelets</td>
<td>Liu et al (2015)<sup>52</sup></td>
</tr>
<tr>
<td>Endotoxaemia/sepsis</td>
<td>P2Y<sub>12</sub> Platelets</td>
<td>Hagiwara et al (2011)<sup>51</sup>; Liverani et al (2016)<sup>48</sup></td>
</tr>
<tr>
<td></td>
<td>Macrophages</td>
<td>Liu et al (2015)<sup>52</sup>; Marques-da-Silva et al (2011)<sup>53</sup></td>
</tr>
<tr>
<td>Transfusion-related acute lung injury</td>
<td>P2X<sub>1</sub> Neutrophils</td>
<td>Lecut et al (2012)<sup>56</sup>; Maître et al (2015)<sup>57</sup></td>
</tr>
<tr>
<td></td>
<td>P2Y<sub>14</sub> Platelets</td>
<td>Sesma et al (2016)<sup>55</sup>; Amison et al (2017)<sup>50</sup></td>
</tr>
<tr>
<td>Asthma</td>
<td>P2Y<sub>12</sub> Platelets</td>
<td>Paruchuri et al (2009)<sup>44</sup>; Cattaneo (2015)<sup>45</sup></td>
</tr>
<tr>
<td></td>
<td>P2Y<sub>1</sub> Platelets</td>
<td>Amison et al (2015)<sup>46</sup></td>
</tr>
</tbody>
</table>

Abbreviation: VSMCs, vascular smooth muscle cells.
The P2Y1 Receptor

The platelet P2Y1 receptor contributes to platelet P-selectin exposure and the formation of platelet-leukocyte conjugates resulting in leukocyte activation and tissue factor exposure. These P2Y1 receptor-mediated events might be relevant for the platelet-dependent recruitment of leukocytes to the lung tissue in the case of inflammation of the airways in allergic mice, although the contribution of the P2Y1 receptors from other cell types such as leukocytes or endothelial cells cannot be excluded. Indeed, in an experimental model of acute vascular inflammation, the endothelial P2Y1 receptor plays an important role in the upregulation of adhesion molecules (P-selectin, VCAM-1, ICAM-1 and the recruitment of leukocytes at the vascular wall). The endothelial P2Y1 receptor also contributes to development of atherosclerosis, a chronic inflammatory process, in ApoE−/− mice. The P2Y1 receptor has also been shown to be present on VSMCs, where it contributes to their proliferation and migration in vitro. This could be relevant for the intimal hyperplasia observed in a vein graft model in mice. In this case, a contribution from the P2Y1 receptors present on platelets and macrophages cannot be excluded. Macrophages would indeed appear to be required, as their depletion abrogated hyperplasia, while data indicated a role of the P2Y1 receptor in the phagocytic and migration activity of macrophages. Altogether, these pieces of evidence suggest that the P2Y1 receptor could represent an attractive and original target for drugs with multiple sites of action, to treat atherothrombosis and, possibly, other inflammatory diseases. Again, the main problem is the lack of good drug candidates to further evaluate this receptor as a potential target for new drug candidates.

The P2X1 Receptor

The platelet P2X1 receptor, along with the neutrophil P2X1 receptor, may contribute to thrombus formation in a context of inflammation as highlighted in a specific model of neutrophil-dependent thrombosis of cremasteric arterioles triggered by laser injury. The neutrophil P2X1 receptor appeared essential for their recruitment at the site of vessel injury and subsequent fibrin production and thrombus formation. Very recently, a role of the platelet P2X1 receptor in the enhancement of FcyRIIa-induced Ca2+ increases and functional responses has been reported, which may be relevant for in vivo platelet-dependent immune responses. The P2X1 receptor from neutrophils plays also an important part in facilitating the neutrophil chemotaxis induced by various chemoattractants, possibly by favouring contraction and retraction of the trailing uropod. Accordingly, the P2X1 receptor from neutrophil, or from monocyte/macrophage, displays an important role in inflammatory diseases leading to organ damage, such as endotoxemia or transfusion-related acute lung injury (TRALI). Thus, similarly to P2Y1, the P2X1 receptor could constitute an attractive target for new therapeutics not only in thrombosis but also in inflammatory processes. Here also, the lack of potent and selective compounds with favourable bioavailability hampers the further evaluation of the potential of this receptor as a valuable target for new drugs.

The P2Y14 Receptor

As already mentioned, platelets express the P2Y14 receptor but its function in platelet physiology is unknown and no modulation of thrombosis has been detected using P2Y14−/− mice in various models of arterial thrombosis (unpublished data). However, using P2Y14 antagonists, separate studies have reported a role of this receptor in leukocyte recruitment in vitro and in vivo. Pulmonary neutrophil recruitment induced by intranasal LPS administration and LPS-induced thrombocytopenia were inhibited in mice administered with a P2Y14 antagonist. In addition, the stimulation of platelets with selective P2Y14 agonists (UDP-glucose, MRS2690) resulted in significant platelet-dependent neutrophil chemotaxis toward macrophage-derived chemokine (CCL22), in vitro. Similarly, the P2Y1 receptor seems to play a specific role in platelet-dependent neutrophil chemotaxis.

Conclusions

Each of the platelet receptors for extracellular adenine nucleotides plays a specific role in platelet functions and arterial thrombosis. Each of these receptors also contributes to the development of various processes related to acute or chronic inflammation. The respective contributions of the platelet receptors and those of other cell types are not yet well unravelled. Undoubtedly, the generation of mice with a specific tissue deletion of these P2 receptor subtypes will help to define their specific functions under various pathological conditions. In addition, the development of novel P2X1 and
P2Y1 receptor antagonists with an improved pharmacokinetic profile should clearly open up new possibilities in this field. The perspective is that these P2 receptors could also represent potential therapeutic targets for the treatment of inflammatory diseases.

Disclosures
None.

Conflict of Interest
The authors declare that they have no conflict of interest.

References

Cattaneo M. The platelet P2 receptors in inflammation. Hämostaseologie 2015;35(03):262–266

Amison RT, Arnold S, O’Shaughnessy BG, et al. Lipopolysaccharide (LPS) induced pulmonary neutrophil recruitment and platelet activation is mediated via the P2Y1 and P2Y14 receptors in mice. Pulm Pharmacol Ther 2017;45:62–68