Endoscopic electrohydraulic lithotripsy of an enterolith causing afferent loop syndrome after Whipple’s operation

We present the case of a 77-year-old man with an enterolith and severe jejunal stricture causing afferent loop syndrome, who was successfully treated with endoscopic balloon dilation and subsequent electrohydraulic lithotripsy (EHL).

The patient underwent Whipple’s operation and radiotherapy for duodenal cancer in 2004 and regularly visited the outpatient clinic without evidence of recurrence. In August 2019, he visited the emergency room with epigastric clamping pain, nausea, vomiting, and fever. Laboratory findings showed a cholestatic pattern of elevated liver function test and hyperbilirubinemia. Computed tomography revealed a short segmental jejunal narrowing with an impacted oval-shaped stone (1.6 cm) causing upstream afferent loop dilation (Fig. 1) [1, 2].

The stricture site was reached by antegrade colonoscope (PCF H290D; Olympus, Tokyo, Japan) (Fig. 2). Contrast media was injected into the afferent loop and revealed segmental narrowing and a huge filling defect (Fig. 3). The stricture site was dilated with a controlled radial expansion balloon (Boston Scientific, Galway, Ireland; 8 mm, 10 atm, 30 seconds) (Fig. 4, Video 1).

A large yellowish enterolith was noted on the proximal side of the jejunal stricture. We fragmented the stone using an EHL probe (3 Fr 3 m; WA9408A, Walz Elektronik GmbH, Rohrdorf, Germany) and electrohydraulic shock wave generator (Lithotron EL-27 Compact; Walz Elektronik GmbH) (Fig. 5) [3, 4]. EHL of the enterolith was performed with saline irrigation through the working channel of the scope (Video 1). The enterolith fragments were then retrieved using a basket (Fig. 6). Forceps biopsy of the stricture site was obtained and revealed chronic enteritis. The patient’s symptoms resolved, and laboratory findings returned to normal after treatment.
In our patient, the enterolith might have occurred due to jejunal hypomotility, stricture, and bacterial overgrowth after radiation therapy [5]. This case illustrates an alternative, less invasive option for the management of enteroliths with small-bowel stricture.

Endoscopy_UCTN_Code_CPL_1AI_2AD

Competing interests

None

The authors

Jihye Lim, Hoonsub So, Sung W. Ko, Jun S. Hwang, Tae J. Song
Division of gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea

Corresponding author

Tae Jun Song, MD, PhD
Division of Gastroenterology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea
Fax: +82-2-30106517
drsong@amc.seoul.kr

References


Bibliography

DOI https://doi.org/10.1055/a-1046-1845
Published online: 2019
Endoscopy © Georg Thieme Verlag KG Stuttgart · New York ISSN 0013-726X

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is a free access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online.

This section has its own submission website at https://mc.manuscriptcentral.com/e-videos

▶ Fig. 4 Endoscopic view showing stricture site dilation using a controlled radial expansion balloon.

▶ Fig. 5 Endoscopic view of electrohydraulic lithotripsy to fragment the enterolith.

▶ Fig. 6 Endoscopic view after stone removal.