Translational Highlights in Breast and Ovarian Cancer 2019 –
Immunotherapy, DNA Repair, PI3K Inhibition and CDK4/6 Therapy

Authors
Andreas D. Hartkopf1, Volkmar Müller2, Achim Wöckel3, Michael P. Lux4, Wolfgang Janni5, Johannes Ettl6,
Erik Belleville7, Florian Schütz8, Peter A. Fasching9, Hans-Christian Kolberg10, Manfred Welslau11, Friedrich Overkamp12,
Florin-Andrei Taran13, Sara Y. Brucker1, Markus Wallwiener8, Hans Tesch14, Tanja N. Fehm15, Andreas Schneeweiss16,
Diana Lüftner17

Affiliations
1 Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
2 Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
3 Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
4 Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, Germany
5 Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
6 Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
7 ClinSol GmbH & Co KG, Würzburg, Germany
8 Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
9 Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
10 Department of Gynecology and Obstetrics, Marienhospital Bottrop, Bottrop, Germany
11 OncoConsult Hamburg GmbH, Hamburg, Germany
12 Universitätsspital Zürich, Klinik für Gynäkologie, Zürich, Switzerland
13 Onkologie Practice at Bethanien Hospital Frankfurt, Frankfurt, Germany
14 Department of Obstetrics and Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
15 National Center for Tumor Diseases, Division Gynecologic Oncology, University Hospital Heidelberg, Heidelberg, Germany
17 Charité University Hospital, Campus Benjamin Franklin, Department of Hematology, Oncology and Tumour Immunology, Berlin, Germany

Key words
advanced breast cancer, metastases, therapy, mutation testing, immunotherapy, PARP, CDK4/6, BRCA1/2, PD-L1

Schlüsselwörter
fortgeschrittenes Mammakarzinom, Metastasen, Therapie, Mutationstestung, Immuntherapie, PARP, CDK4/6, BRCA1/2, PD-L1

received 28.10.2019
revised 31.10.2019
accepted 31.10.2019

Bibliography
DOI https://doi.org/10.1055/a-1039-4458
Geburtsh Frauenheilk 2019; 79: 1309–1319 © Georg Thieme Verlag KG Stuttgart · New York | ISSN 0016-5751

Correspondence
Peter A. Fasching, MD
Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen EMN, Friedrich Alexander University of Erlangen-Nuremberg
Universitätsstraße 21–23, 91054 Erlangen, Germany
peter.fasching@fau.de

Deutsche Version unter:
https://doi.org/10.1055/a-1039-4458
ABSTRACT

In the near future, important translational questions of clinical relevance will be addressed by studies currently in progress. On the one hand, the role of PD-L1 expression must be further understood, after it was found to be relevant in the use of pembrolizumab in first-line therapy of patients with metastatic triple-negative breast cancer (TNBC). No association between efficacy and PD-L1 expression was found in a neoadjuvant study that included pembrolizumab in TNBC. The pathological complete response rate (pCR) was higher in both patient groups with and without PD-L1 expression when pembrolizumab was added to chemotherapy. Another future question is the identification of further patient groups in which efficacy of PARP inhibitors is seen, which are licensed for the pBRCA1/2 germline mutation. These include, for example, patients with mutations in other genes, which are involved in homologous recombination, or patients with tumours that show an abnormality in global tests of homologous recombination deficiencies (HRD tests). The question of whether a PARP inhibitor can be given and with which chemotherapy combination partners is currently being investigated in both breast and ovarian cancer. While the data on improved overall survival are being consolidated for the CDK4/6 inhibitors, knowledge of molecular changes during the therapy and during progression on the therapy is growing. Both the accumulation of PI3K mutations and also PTEN changes might play a part in planning subsequent therapies. This review article summarises these recent developments in breast cancer and in part also in ovarian cancer.

Introduction

Long after the introduction of anti-hormone therapy and anti-HER2 therapy, treatments have again been introduced with the new targeted and immuno-oncological therapies (CDK4/6 inhibitors; PI3K inhibition; anti-PD-1/PD-L1 antibodies; PARP inhibitors) that are linked to a biomarker that predicts treatment efficacy. Also, the first applications from the field of machine learning have recently been approved or are currently tested in larger confirmatory phase III studies. The licensing situation (FDA; USA) is shown in Fig. 1. Already, there have thus been over 5 years of clinical experience with this substance class. Combinations with antibodies against CTLA4 are also licensed for other tumour types. Moreover, substances against LAG-3 and B7-H3 are at the early clinical trial stage. With regard to breast cancer, only atezolizumab is so far licensed in combination with nab-paclitaxel in TNBC patients whose immune cells in the tumour show PD-L1 expression [4].

Immunotherapy

Overview

Immunotherapy with checkpoint inhibitors is becoming increasingly important in oncology. For breast cancer, PD-1 and PD-L1 inhibitors have recently been approved or are currently tested in larger confirmatory phase III studies. The licensing situation (FDA; USA) is shown in Fig. 1. Already, there have thus been over 5 years of clinical experience with this substance class. Combinations with antibodies against CTLA4 are also licensed for other tumour types. Moreover, substances against LAG-3 and B7-H3 are at the early clinical trial stage. With regard to breast cancer, only atezolizumab is so far licensed in combination with nab-paclitaxel in TNBC patients whose immune cells in the tumour show PD-L1 expression [4].

Immunohistochemical testing for PD-L1 positivity

Some of the indications for PD-1/PD-L1 antibodies are linked with a diagnostic test for PD-L1 in the tumour tissue, and various immunohistochemical methods and algorithms are used. While some consider the expression only in immune cells in the tumour [1], others assess the combined expression in immune cells in the tumour and also in tumour cells [2]. The IC (immune cell) score was used in the IMPASSION130 study with atezolizumab and the CPS (combined positive score) was used in the KEYNOTE-119, -355 and -522 studies with pembrolizumab. Fig. 2 shows a definition of the two assessment methods and Fig. 3 shows an example of CPS. There is little experience comparing different antibodies and determination methods. Such a comparison with the antibodies SP142 (IC ≥ 1%), SP263 (IC ≥ 1%) and 22C3 (CPS ≥ 1)

ZUSAMMENFASSUNG

was carried out recently in the Impassion130 study [3]. All test methods were able to identify populations in which atezolizumab and nab-paclitaxel were more effective with regard to overall survival than monotherapy with nab-paclitaxel (SP142 HR: 0.74; 95% CI: 0.54–1.01/22C3 HR: 0.78; 95% CI: 0.62–0.99/SP263 HR: 0.75; 95% CI: 0.59–0.96) [3].

KEYNOTE-119

With regard to the treatment of TNBC patients in the first line setting with atezolizumab and nab-paclitaxel, it has already been shown that PD-L1 positivity with the IC score is necessary for efficacy, while no benefit was shown for atezolizumab in tumours with a negative IC score [4]. Knowledge of these data and experience with other diseases raise the questions of...
1. the efficacy of other PD-1/PD-L1 antibodies,
2. the efficacy of monotherapy,
3. other combination partners and
4. their effectiveness in later treatment lines.

In this context, the KEYNOTE-119 study shows important results. Patients with advanced triple-negative breast cancer who had already concluded at least one treatment line in the metastatic situation took part in this study. Following randomisation, the patients were treated either with monotherapy with the anti-PD-1 antibody pembrolizumab or chemotherapy (physician’s choice: capecitabine, vinorelbine, eribulin or gemcitabine). Treatment did not depend on PD-L1 expression, but the CPS score was a stratification factor. The primary study aims were differences in overall survival in patients with a CPS score ≥ 10, a CPS score > 0 and, if these study aims were reached, in the overall group also. Overall, the study was negative, but a clear trend could be seen that pembrolizumab was superior to chemotherapy with increasing PD-L1 expression. The hazard ratios are given in Table 1 and the overall survival with pembrolizumab or chemotherapy depending on the CPS score is shown in Fig. 4. It remains to be discussed whether PD-L1 expression in highly pre-treated patients can be used as a selection criterion for therapy with pembrolizumab. In view of the lack of standard therapies in advanced therapy lines, this could be an option.

KEYNOTE-522

Since anti-PD-L1/PD-1 therapies have become established for patients with advanced breast cancer, it makes sense to test this treatment in patients with early breast cancer also. Tumours in the treatment-naive situation should theoretically have a lower chance of developing an immune escape phenomenon because of the lack of therapeutic exposure. A certain superior efficacy in the neoadjuvant treatment situation was already shown in the Gepar-Nuevo study, although the study result was not statistically significant [5]. In the KEYNOTE-522 study, the addition of a checkpoint inhibitor has now been evaluated in a large neoadjuvant phase III study [6]. Patients with a triple-negative tumour were included in this study if neoadjuvant chemotherapy was indicated. The patients were treated with platinum-containing chemotherapy or platinum-containing chemotherapy with the addition of pembrolizumab. The patients were not preselected according to criteria that consider the expression of PD-1 or PD-L1. A total of 1174 patients were randomised in a 2:1 ratio. It was shown that the pathological complete remission rate (pCR rate) was increased from 51.2 to 64.8% by the addition of pembrolizumab [6]. This difference was statistically significant ($p = 0.00055$). Interestingly, the effect was not dependent on the CPS score. In patients without PD-L1 expression, pCR was shown in 30.3% of cases with chemotherapy, while pCR was seen in 45.3% of cases with chemotherapy and pembrolizumab. With a CPS ≥ 1 the pCR rates...
were 54.9% (chemotherapy) and 68.9% (chemotherapy + pembrolizumab).

With regard to event-free survival (EFS), patients on pembrolizumab had a lower risk for a disease event (HR = 0.63; 95% CI: 0.43–0.93) [6]. However, statistical significance was not reached formally for this interim analysis. The follow-up for this analysis was extremely short and few events occurred. Future interim analyses must therefore be awaited.

Hormone Resistance

Update on CDK4/6 inhibitors – growing data on overall survival

Combined treatments that aim to overcome mechanisms of primary or secondary endocrine resistance have been investigated for a few years. Everolimus was one of the first substances that showed a marked benefit with regard to progression-free survival [7] but which did not extend to overall survival [8]. The CDK4/6 inhibitors (CDK4/6i), in combination with anti-endocrine therapy, uniformly showed an improvement in progression-free survival with hazard ratios between 0.5 and 0.6 (summarised in [9]). Some of these studies have already been analysed with regard to overall survival. Table 2 gives an overview of PFS and OS data.

With regard to overall survival also, similarity can be identified between the studies. As with all substance classes in which no direct comparison has been made between the substances, it is difficult to draw conclusions on whether one or the other substance has greater effectiveness. It is also difficult to assess minor differences with regard to the side effect profile. Three studies to date have shown a statistically significant survival advantage (MONALEESA-3, MONALEESA-7, MONARCH-2) [10–12], while this aim was shown only with a p value of 0.09 in the PALOMA-3 study, which showed however a similar effect size [13]. The results of the MONARCH-3, PALOMA-2 and MONALEESA-2 studies are still pending and will surely be able to provide additional information about this substance class.

While it has now been shown that overall survival is better with combined therapy consisting of CDK4/6i+ET than with monotherapy, the question of whether this is a long-term effect has not yet been clearly answered. Future data from ongoing studies will surely provide additional insights.

Table 1 Comparison of overall survival between pembrolizumab and chemotherapy in the KEYNOTE-119 study according to CPS subgroups (from [45]).

<table>
<thead>
<tr>
<th>CPS score</th>
<th>Number of patients</th>
<th>median OS Pembro</th>
<th>median OS Chemo</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ITT population</td>
<td>312 vs. 310</td>
<td>9.9 (8.3–11.4)</td>
<td>10.8 (9.1–12.6)</td>
<td>0.97 (0.92–1.15)</td>
</tr>
<tr>
<td>CPS ≥ 1</td>
<td>203 vs. 202</td>
<td>10.7 (9.3–12.5)</td>
<td>10.2 (7.9–12.6)</td>
<td>0.86 (0.69–1.06)</td>
</tr>
<tr>
<td>CPS ≥ 10</td>
<td>96 vs. 98</td>
<td>12.7 (9.9–16.3)</td>
<td>11.6 (8.3–13.7)</td>
<td>0.78 (0.57–1.06)</td>
</tr>
<tr>
<td>CPS ≥ 20</td>
<td>57 vs. 52</td>
<td>14.9 (10.7–19.8)</td>
<td>12.5 (7.3–15.4)</td>
<td>0.58 (0.38–0.88)</td>
</tr>
</tbody>
</table>

Fig. 4 Overall survival according to CPS score in the KEYNOTE-119 study separately for patients treated with pembrolizumab (a) and patients treated with chemotherapy (b). (modified from [45]).

Table 1 shows the comparison of overall survival between pembrolizumab and chemotherapy in the KEYNOTE-119 study according to CPS subgroups (from [45]).
been answered. At the present time, it can only be concluded that fewer deaths occurred during the (short) follow-up period of the reported study in the stated circumstances.

Biomarkers and CDK4/6 inhibitors

Data that analysed mutation frequencies before the start of treatment and at the time of progression have already been published in the PALOMA-3 study. This showed that a PIK3CA mutation, which was not detectable at the start of treatment, was found in 8.2% of patients at the end of treatment [14]. This is important especially because it was shown in the SOLAR-1 study that combination with the PIK3CA inhibitor alpelisib and fulvestrant achieved improved progression-free survival in patients with a PIK3CA mutation compared with treatment with fulvestrant alone [15]. A small subgroup analysis suggests that this effect is independent of prior treatment with a CDK4/6 inhibitor [15]. Large studies of treatment with alpelisib after a CDK4/6 inhibitor are still recruiting and will deliver extensive data on the efficacy of alpelisib after CDK4/6 inhibitor therapy (BYLIEVE study).

The data on PIK3CA mutation accumulation from the PALOMA-3 study show that planning of therapy sequences in future may be linked to targeted molecular diagnostics. In another small study of letrozole and ribociclib (n = 5) with paired tumour samples before treatment and on progression with therapy, it was shown that the loss of expression can also have a role through a loss of gene copies [16]. Four of these 5 patients had a loss of RB or PTEN [16]. Even with the small number of patients, these results are interesting because they were supported by preclinical experiments and it was already implied that a loss of PTEN could be associated with resistance to PI3K inhibitor therapy [17]. PTEN loss is of particular interest in the context of new treatments because the tumour suppressor PTEN is a counter-regulator of the Akt/PI3K signalling pathway and loss suggests lack of counter-regulation of this signalling pathway.

The interaction between PI3 and PTEN appears, however, to be more complex in that the different subunits of PIK3 play a different role in PTEN-deficient breast cancer [18]. Future studies will clarify whether PI3K inhibitor therapy has a part to play in such patients.

It should be noted that loss of gene copies of RB and/or PTEN was also investigated in the PALOMA-3 study but was not found there [14].

PARP Inhibition

Another treatment that was introduced based on a biomarker is treatment with a PARP inhibitor. An improvement in PFS was shown in large phase III studies for patients with HER2-negative, advanced breast cancer and a germline mutation in **BRCA1** or **BRCA2** (OlympiAD study and EMBRACA study) for the two PARP inhibitors olaparib and talazoparib compared with chemotherapy [19, 20]. Patients on olaparib, who had not received any chemotherapy for their metastatic disease, even showed an overall survival advantage. It was also shown that monotherapy with the targeted PARP inhibitor leads to an improvement in quality of life compared with chemotherapy [21, 22].

PARP inhibitors in combination with platinum in patients with breast cancer and BRCA1/2 mutation

While the OlympiAD and EMBRACA studies compared a PARP inhibitor and non-platinum-containing mono-chemotherapy, the question arises in patients with a germline mutation in **BRCA1** or **BRCA2** of whether platinum-containing mono-chemotherapy can achieve similar effects. It is known that a **BRCA1** mutation is a predictor for the particular efficacy of platinum therapy. The TNT study showed this in a comparison with therapy with a taxane [23]. The high efficacy of platinum chemotherapy in patients with a **BRCA1/2** mutation was also shown in the neoadjuvant studies [24–26]. Consequently, the question is whether PARP inhibitor therapy plays a part in patients with a **BRCA1/2** mutation in addition to or compared with treatment with platinum-containing chemotherapy. In the neoadjuvant situation, it has already been shown in the GeparOOLA study, conducted in patients with a **BRCA1/2** mutation (germline or somatic) or confirmed homologous recombination deficiency (HRD), that olaparib/taxane followed by anthracycline-containing chemotherapy leads to a similar or slightly improved nominal pCR rate compared with carboplatin/taxane followed by the anthracycline-containing chemotherapy [27]. In the recently presented BROCADE-3 study, this topic was investigated with the PARP inhibitor veliparib in the metastatic treatment situation [28]. This study included patients with advanced HER2-negative breast cancer who had a germline mutation in **BRCA1/2**, had not received more than 2 chemotherapies in the advanced situation and had received a maximum of one treatment line with platinum-containing chemotherapy, after which no rapid progression (≤ 12 months) was permitted. 513 patients in total were included in the study, randomised 2:1 in fa-
vour of the PARP inhibitors; one arm received veliparib + carboplatin + paclitaxel and the other arm was given only carboplatin + paclitaxel. With regard to the primary endpoint of PFS, a statistically significant benefit was reported with a HR of 0.70 (95% CI: 0.57–0.88) [28]. This effect did not extend to overall survival in the early analysis [28]. With regard to side effects, more grade 3–4 thrombocytopenia (40 vs. 28%) and more anaemia (all grades, 80 vs. 70%) was seen with veliparib + chemotherapy. The other side effects were similar between the two groups, with a slightly higher general side effect rate in the veliparib arm [28]. Comparable data are not available for the other PARP inhibitors although prior therapy with platinum-containing chemotherapy was permitted in the studies of olaparib and talazoparib, as in the BROCADE-3 study [19, 20].

PARP inhibitors in the primary treatment of ovarian cancer

In ovarian cancer, clear benefits were shown in three recently reported studies for patients who were treated with a PARP inhibitor as maintenance therapy after primary diagnosis.

Patients with high-grade ovarian cancer/fallopian tube cancer/peritoneal cancer stage III or IV were enrolled in the PAOLA-1 study and treated either with bevacizumab as maintenance monotherapy or with a combination of olaparib and bevacizumab after platinum- and taxane-containing chemotherapy. The study showed a benefit overall for the combined arm with a HR of 0.59 (95% CI: 0.49–0.72). The effect appeared to be much more prominent in the group of patients with a BRCA mutation (HR = 0.31; 95% CI: 0.20–0.47) than in patients without BRCA mutation (HR = 0.71; 95% CI: 0.58–0.88) [29]. It was already suspected for breast cancer that a BRCA mutation interacts with angiogenesis: in the GeparQuinto study, a pCR rate of 61.5% was achieved in neo-adjuvant treatment with a combination of chemotherapy and bevacizumab [30].

The PRIMA study, in which treatment with niraparib was compared with placebo after the initial chemotherapy, investigated a similar question to the PAOLA-1 study. Here, too, a benefit in the overall population in favour of the PARP inhibitor was demonstrated with a HR of 0.62 (95% CI: 0.5–0.76). In the PRIMA study, too, this effect was more apparent in patients with a homologous recombination defect (HRD) based on a BRCA1/2 mutation (HR = 0.40; 95% CI: 0.27–0.62), whereas the HR was 0.50 (95% CI: 0.31–0.83) in patients with the HRD without BRCA1/2 mutation. In patients without the HR defect, the HR was 0.68 (95% CI: 0.49–0.94) [31].

The VELIA study, was also conducted with veliparib in the primary treatment of ovarian cancer [32]. In this three-arm study, similar to PRIMA, no maintenance treatment with bevacizumab was given. However, the PARP inhibitor was combined with chemotherapy. The patients therefore received either chemotherapy with carboplatin and paclitaxel or this chemotherapy with veliparib or, in the third arm, the combination of chemotherapy + veliparib, followed by maintenance therapy with veliparib. The veliparib arm without maintenance therapy did not show any improvement compared with the chemotherapy arm, while the veliparib arm with subsequent veliparib maintenance therapy showed a benefit in the overall population with a HR of 0.68 (95% CI: 0.56–0.83). In this study, too, the effect was more obvious in the group of patients who had a mutation in BRCA1 or BRCA2 (HR = 0.44; 95% CI: 0.28–0.68) [32].

Overall, it can be confirmed that PARP inhibitor therapy represents clear progress for patients with ovarian cancer and will rapidly become part of clinical practice.

Biosimilars

Is trastuzumab the same as trastuzumab?

Development of a range of biosimilars became possible with the expiry of the patent for the reference trastuzumab. Because of the biological production process, biosimilars are not completely identical to the reference product but the approval process requires that the quality of the product is comparable to that of the reference product, and likewise the efficacy and side effects. In the comparative studies, however, major differences between the reference trastuzumab and the biosimilar were noted in a few of these studies (summarised in [33]). In the case of SB3, this appeared to be the consequence of a reduced efficacy of the reference trastuzumab.

In the neoadjuvant study, treatment with the reference trastuzumab and chemotherapy was compared with treatment with chemotherapy and the SB3 trastuzumab in HER2-positive patients. The pCR rate with SB3 that was nearly 10% higher than with the reference trastuzumab [34, 35]. Differences were also found in recurrence-free survival and overall survival. Events in the form of recurrence (HR = 0.47; 95% CI: 0.26–0.87) and overall survival (HR = 0.37; 95% CI: 0.13–1.04) occurred markedly more seldom in the SB3 treatment arm [36].

In investigations regarding antibody-dependent cellular cytotoxicity (ADCC), which plays a part in the antibody-mediated action of the natural killer cells on the tumour cells, it was found that certain production lots of the reference trastuzumab appeared to suggest reduced ADCC activity (relative ADCC activity, relative FcyRlla binding activity) [37].

When the study was analysed separately according to the groups SB3, reference trastuzumab with normal ADCC characteristics and reference trastuzumab with compromised ADCC characteristics, it was seen that only the group with the reference trastuzumab and compromised ADCC showed clinically visible poorer prognosis with an over five-fold increased risk for recurrence compared with the non-compromised reference trastuzumab (HR = 5.31; 95% CI: 1.74–16.25) [36]. Fig. 5 shows the corresponding Kaplan-Meier curves.

These data show that large differences in efficacy, hitherto apparently unidentified, can occur in the production of monoclonal antibodies, which are very probably of clinical relevance.

Big Data and Digitisation of Medicine

Technologies that investigate large amounts of data with machine learning or deep learning methods are being used and implemented ever increasingly in medicine [38]. Applications, some of which are already under development, could thus have a direct influence on clinical practice in the near future.
Digital pathology and machine learning

One of the main fields of research is processing of digital image data, which can be important especially for radiological and histopathological images. In an article that appeared recently, an attempt was made to establish algorithms with machine learning that predict from the histopathological appearance whether a tumour has microsatellite instability (MSI).

Microsatellite instability is the result of defective mismatch repair mechanisms in DNA repair, which affects the mutation rate in the entire genome, but especially in short tandem repeats (microsatellites). MSI is usually determined by immunohistochemistry for the expression of the 4 mismatch repair genes MLH1, MSH2, MSH6 and PMS2 [39]. A loss of expression is generally found with a mutation. This condition is often found in colon cancer and endometrial cancer.

It was shown in a recently published article how this prediction can also be made with haematoxylin-eosin staining by means of deep learning [40]. The AUC in a validation cohort of 378 patients with colorectal carcinoma was 0.84. Such methods are also conceivable for other tumour types, such as ovarian cancer or cervical cancer.

Support of clinical decision-making

Another area of research is the implementation of decision-making algorithms in routine clinical practice or tumour boards. Clinical decision-making could benefit in many ways from a big data or machine learning approach. On the one hand, systematic analysis of patient data including treatment data and outcome data (prognosis and quality of life) offers a large opportunity for using the data recorded in routine clinical practice for modern machine learning analysis and so make suggestions that will result in better quality of life or prognosis for the individual patient. On the other hand, decision-making could be improved by avoiding error. Errors can occur both in the interpretation of findings and in the compilation and presentation of findings, which lead to sub-optimal decisions. Digitisation and plausibility checking at this level could help to avoid decision errors [41]. In the PRAEGNANT network in Germany [42], machine learning methods, for example,
are used to try to optimise treatment decisions [43, 44]. Useful predictions of the optimal clinical procedure have already been achieved by means of encoding with recurrent neuronal networks and what is known as tensor decoding [43, 44].

The extent to which decision support before, during or after real decision-making can be integrated in routine clinical practice remains to be seen. Appropriate studies must be conducted that should integrate both doctors and patients.

Prospects

With the new treatments, atezolizumab, the PARP inhibitors in breast cancer and soon the PI3K inhibitor alpelisib also, new treatments have been introduced that are associated with a biomarker that predicts the efficacy of these therapies. Implementation of these tests will be just as demanding as extending the scientific understanding of these markers. For example, atezolizumab therapy in the metastatic situation is linked to PD-L1 positivity of the immune cells, while in the neoadjuvant setting, pembrolizumab increased pCR rates independent of PD-L1 expression. In the far advanced treatment situation, however, pembrolizumab efficacy appeared to correlate with PD-L1 expression.

These examples show that simultaneously with the introduction of new predictive molecular tests into routine clinical practice, assistance in interpreting and assessing the relevance of the test results must be provided to therapists.

Acknowledgements

This article arose partially as a result of grants from Hexal and the PRAEGNANT network, which is supported by Pfizer, Hexal, Celgene, Daiichi Sankyo, Merrimack, Eisai, AstraZeneca and Novartis. None of the companies shared in the authorship of this manuscript. The authors alone are responsible for the content of the manuscript.

Conflict of Interest

A.D.H. received speaker and consultancy honoraria from AstraZeneca, Genomic Health, Roche, Novartis, Celgene, Lilly, MSD, Eisai, Teva, Tesaro, Daiichi Sankyo, Hexal and Pfizer. F.O. received speaker and consultancy honoraria from Amgen, AstraZeneca, Bayer, BMS, Boehringer-Ingelheim, Chugai, Celgene, Cellex, Eisai, Gilead, Hexal, Ipsen, Janssen-Cilag, Merck, MSD, Novartis, Novonordisk, Riemser, Roche, Servier, Shire, Tesaro, Teva. H.-C.K. received honoraria from Carl Zeiss meditec, Teva, Theracloon, Novartis, Amgen, AstraZeneca, Pfizer, Janssen-Cilag, CSK, LIV Pharma, Roche and Genomic Health. P.A.F. received honoraria from Novartis, Pfizer, Roche, Amgen, Celgene, Daiichi Sankyo, AstraZeneca, Merck-Sharp & Dohme, Eisai, Puma and Teva. His institution conducts research with funding from Novartis and BioNTech. M.W. received speaker’s honoraria and consultant fees from Novartis, Amgen, Celgene, Roche, Genentech, AstraZeneca, and Pfizer. H.T. received honoraria from Novartis, Roche, Celgene, Pfizer and travel support from Roche, Celgene and Pfizer. J.E. received honoraria from AstraZeneca, Roche, Celgene, Novartis, Lilly, Pfizer, Pierre Fabre, Teva and travel support from Celgene, Pfizer, Teva and Pierre Fabre. M.P.L. has participated on advisory boards for AstraZeneca, Lilly, MSD, Novartis, Pfizer, Eisai, Genomic Health and Roche and has received honoraria for lectures from MSD, Lilly, Roche, Novartis, Pfizer, Genomic Health, AstraZeneca, medac and Eisai. V.M. received speaker honoraria from Amgen, AstraZeneca, Celgene, Daiichi Sankyo, Eisai, Pfizer, Novartis, Roche, Teva, Janssen-Cilag and consultancy honoraria from Genomic Health, Hexal, Roche, Pierre Fabre, Amgen, Novartis, MSD, Daiichi Sankyo and Eisai, Lilly, Tesaro and Nektar Therapeutics.

E.B. received honoraria from Novartis, Hexal and onkowissen.de for consulting, clinical research management or medical education activities. A.S. received honoraria from Roche, Celgene, AstraZeneca, Novartis, Pfizer, Zuckschwerdt Verlag GmbH, Georg Thieme Verlag, Aurikamed GmbH, MCI Deutschland GmbH, bsh medical communications GmbH and promedicis GmbH.

W.J. received honoraria and research grants from Novartis, Roche, Pfizer, Lilly, AstraZeneca, Chugai, Sanofi, Daiichi Sankyo, Tesaro. F.S. participated on advisory boards for Novartis, Lilly, Amgen and Roche and received honoraria for lectures from Roche, AstraZeneca, MSD, Novartis and Pfizer. A.W. participated on advisory boards for Novartis, Lilly, Amgen, Pfizer, Roche, Tesaro, Eisai and received honoraria for lectures from Novartis, Pfizer, Aurikamed, Roche, Celgene. D.L. received honoraria from Amgen, AstraZeneca, Celgene, Lilly, Loreal, MSD, Novartis, Pfizer, Tesaro, Teva. T.N.F. has participated on advisory boards for Amgen, Daiichi Sankyo, Novartis, Pfizer, and Roche and has received honoraria for lectures from Amgen, Celgene, Daiichi Sankyo, Roche, Novartis and Pfizer.

References

