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ABSTRACT

Monoamine oxidases (MAOs) are key metabolic enzymes for

neurotransmitter and dietary amines and are targets for the

treatment of neuropsychiatric and neurodegenerative disor-

ders. This study examined the MAO inhibition potential of ka-

vain and other kavalactones from the roots of kava (Piper me-

thysticum), a plant that has been used for its anxiolytic proper-

ties. (±)-Kavain was found to be a good potency in vitro inhib-

itor of human MAO‑B with an IC50 of 5.34 µM. (±)-Kavain is a

weaker MAO‑A inhibitor with an IC50 of 19.0 µM. Under the

same experimental conditions, the reference MAO inhibitor,

curcumin, displays IC50 values of 5.01 µM and 2.55 µM for

the inhibition of MAO‑A and MAO‑B, respectively. It was fur-

ther established that (±)-kavain interacts reversibly and com-

petitively with MAO‑A and MAO‑B with enzyme-inhibitor dis-

sociation constants (Ki) of 7.72 and 5.10 µM, respectively.

Curcumin in turn, displays a Ki value of 3.08 µM for the inhibi-

tion of MAO‑A. Based on these findings, other kavalactones

(dihydrokavain, methysticin, dihydromethysticin, yangonin,

and desmethoxyyangonin) were also evaluated as MAO inhib-

itors in this study. Yangonin proved to be the most potent

MAO inhibitor with IC50 values of 1.29 and 0.085 µM for

MAO‑A and MAO‑B, respectively. It may be concluded that

some of the central effects (e.g., anxiolytic) of kava may be

mediated by MAO inhibition.

Monoamine Oxidase Inhibition by Kavalactones from Kava
(Piper Methysticum)
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Introduction
Monoamine oxidase (MAO) is a flavin adenine dinucleotide (FAD)-
containing enzyme that is attached to the outer mitochondrial
membrane. MAOs are key metabolic enzymes that regulate the
levels of neurotransmitters and dietary amines in both the central
and peripheral tissues [1, 2]. MAO exists as 2 distinct isoforms,
MAO‑A and MAO‑B, which are encoded by separate genes.
Although the MAO isoforms are approximately 70% identical on
the amino acid sequence level, in many instances they exhibit dif-
ferent substrate specificities [3, 4]. In this regard, serotonin is a
specific substrate for MAO‑A while 2-phenylethylamine and ben-
zylamine are specific substrates for the MAO‑B isoform [5]. Con-
siderable overlap in substrate specificity also occur with for exam-
ple dopamine, adrenaline, noradrenaline, and tyramine acting as
substrates for both isoforms. The MAOs often also display differ-
ent inhibitor specificities. The irreversible inhibitors clorgyline
1136
and selegiline are thus specific inhibitors of MAO‑A and MAO‑B,
respectively, and have been used to distinguish between the 2 iso-
forms in pharmacological studies [6].

Since the MAOs are involved in the metabolic breakdown of
neurotransmitters, they are of considerable pharmacological and
therapeutic interest [5]. MAO‑A inhibitors have been used clinical-
ly to treat depressive illness and act by inhibiting the central me-
tabolism of serotonin and noradrenalin, thereby elevating their
levels [7]. MAO‑B inhibitors, in turn, have been used to treat Par-
kinsonʼs disease and act by reducing the central metabolism of
dopamine [8]. MAO‑B inhibitors are thus frequently combined
with L-dopa, the metabolic precursor of dopamine, in Parkinsonʼs
disease treatment [9]. MAO inhibitors may also reduce the forma-
tion of metabolic by-products of MAO catalysis, most notably hy-
drogen peroxide [2,10]. The MAO-mediated formation of hydro-
gen peroxide and its role in generating reactive oxygen species
have been implicated the cellular- and neurodegeneration in car-
Prinsloo D et al. Monoamine Oxidase Inhibition… Planta Med 2019; 85: 1136–1142



▶ Fig. 1 Structures of kavalactones from P. methysticum.
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diovascular disease and Parkinsonʼs disease. MAO‑A inhibitors
have thus been advocated as potential treatment of congestive
heart failure while MAO‑B inhibitors may act as potential neuro-
protective agents in neurodegenerative disorders [2,11–13]. In-
terestingly, MAO‑A activity has been found to be increased in cer-
tain types of cancer, and MAO‑A inhibitors have thus been inves-
tigated as potential treatment of prostate cancer [14].

This study investigates the MAO inhibition properties of kavain,
a major constituent of Piper methysticum (Piperaceae, G. Forster),
a pepper plant called kava, as well as other kavalactones present
in this plant (▶ Fig. 1) [15,16]. The root of the kava plant is used as
a cultural beverage prepared in water or coconut milk and is used
for religious, social, and medicinal purposes by South Pacific is-
land inhabitants. The recreational use of kava is associated with a
calming effect and kava extracts have subsequently been eval-
uated in clinical trials for the treatment of anxiety disorder [17–
20]. In fact, in some Western societies, kava is used to relieve
stress-induced anxiety and insomnia. Other pharmacological ef-
fects of extracts of the kava plant include anti-inflammatory and
analgesic properties [21,22]. The constituents of kava exert neu-
rological effects, in part, due to their lipophilic profile, which facil-
itates entry into the central nervous system [23]. It should be
noted that some reports suggest that kava may potentially induce
hepatotoxicity, although the mechanism of toxicity is not yet clear
[24]. The major constituents are subdivided into 3 groups: kava-
lactones, chalcones, and conjugated diene ketones. The kavalac-
tones (also known as kavapyrones) include (+)-kavain, (+)-7,8-di-
hydrokavain, (+)-methysticin, (+)-7,8-dihydromethysticin, yango-
nin, desmethoxyyangonin, and (+)-5,6,7,8-tetrahydroyangonin as
the most abundant kavalactones [25]. The kavalactones undergo
4 degradation processes, which are hydroxylation of the lactone
ring and the aromatic ring at C-12, demethylation of the 4-me-
thoxyl group, 7,8-double bond reduction, and dehydration. The
molecular targets of the kavalactones include histamine recep-
tors, voltage-gated channels (Na+ and Ca2+), opioid receptors,
the dopamine type-2 receptor, and γ-aminobutyric acid type A re-
ceptors [26–30]. A literature survey also reveals that these kava-
lactones have been found to act as inhibitors of human platelet
MAO‑B [31]. The inhibition of MAO‑A by kavalactones have, how-
Prinsloo D et al. Monoamine Oxidase Inhibition… Planta Med 2019; 85: 1136–1142
ever, not been reported. This study therefore investigates the hu-
man MAO‑A inhibition properties of some of the kavalactones
that are most abundant in the kava plant, and also examines the
reversibility and mode of MAO inhibition by (±)-kavain and yango-
nin. Curcumin was included in this study as reference MAO inhib-
itor [32]. The potential MAO‑A inhibition properties of kavalac-
tones may be particularly relevant in defining the mechanism by
which kava extracts exert an anxiolytic effect.
Results and Discussion
The inhibition studies were carried out with the recombinant hu-
man MAOs as enzyme sources and kynuramine served as the non-
selective substrate [33]. Examples of sigmoidal curves for the in-
hibition of the MAOs are given in ▶ Fig. 2. For this study, the nat-
ural product and known MAO inhibitor curcumin served as refer-
ence inhibitor [32].

The results of the MAO inhibition studies are given in ▶ Table 1
and show that (±)-kavain is a noteworthy inhibitor of MAO‑B with
an IC50 value of 5.34 µM. The natural occurring enantiomer,
(+)-kavain, exhibits similar MAO‑B inhibition potency with an IC50

of 4.34 µM. This inhibition potency is within the same range as
that of the reference MAO inhibitor curcumin, which exhibits IC50

values of 5.01 and 2.55 µM for the inhibition of MAO‑A and
MAO‑B, respectively. A literature survey shows that kavain is
known to inhibit MAO‑B [31]. The MAO‑B inhibition properties of
kavain as well as other kavalactones from the kava plant (dihydro-
kavain, methysticin, dihydromethysticin, yangonin, and desme-
thoxyyangonin) were reported and the literature IC50 values are
given in ▶ Table 1. The inhibition of MAO‑A by kavain and kavalac-
tones have, however, not been reported. As shown, (±)-kavain in-
hibits MAO‑A with an IC50 of 19.0 µM. The (+)-enantiomer is
slightly lower in potency with an IC50 of 32.1 µM. As mentioned
in the introduction, the potential MAO‑A inhibition properties of
kavalactones may be particularly relevant in defining the mecha-
nism by which kava extracts exert an anxiolytic effect. This study
therefore set out to determine the MAO‑A inhibition properties of
other kavalactones that are present in kava. The results show that
some of the kavalactones are indeed inhibitors of MAO‑A with
1137



▶ Table 1 The IC50 values for the inhibition of recombinant human MAO‑A and MAO‑B by constituents of P. methysticum.

IC50 (µM)a SIb

MAO‑A MAO‑B

(±)-kavain 19.0 (17.5–20.6) 5.34 (3.07–9.30) (40.5)c 3.5

(+)-kavain 32.1 (23.5–43.8) 4.34 (2.39–7.88) 7.4

(+)-7,8-Dihydrokavain > 100d 8.23 (4.74–14.3) > 12.1

(+)-Methysticin 8.12 (7.23–9.12) 0.429 (0.088–2.09)
(0.67 racemate)c

18.9

(+)-7,8-Dihydromethysticin 23.2 (18.0–28.6) 0.855 (0.774–0.945) 27.1

Yangonin 1.29 (1.04–1.58) 0.085 (0.067–0.109) 15.1

Desmethoxyyangonin 4.44 (4.08–4.83) 0.251 (0.231–0.273) (0.12)c 17.7

Curcumin 5.01 (3.99–6.29) 2.55 (2.08–3.14) 2.0

Toloxatone 3.92e – –

Lazabemide – 0.091e –

a All values are expressed as the geometric mean of triplicate determinations with the confidence interval (95%) given in brackets; b Selectivity index (SI) =
IC50(MAO‑A)/IC50(MAO‑B); c Values obtained from reference [31]; d No inhibition observed atmaximum tested concentration of 100 µM; e IC50 values taken
from reference [37]

▶ Fig. 2 Sigmoidal plots for the inhibition of MAO‑A (panel A) and MAO‑B (panel B) by (±)-kavain (open circles), curcumin (filled circles), yangonin
(open triangles), and desmethoxyyangonin (filled triangles).
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yangonin (IC50 = 1.29 µM) and desmethoxyyangonin (IC50 =
4.44 µM) acting as the most potent inhibitors. These inhibition
potencies are in the same range as that recorded for the reference
MAO‑A inhibitor, toloxatone. It is interesting to note that yango-
nin and desmethoxyyangonin are the only planar compounds
among the kavalactones (e.g., possessing the aromatic 2-pyrone),
which suggest that these compounds fit and interact better in the
MAO‑A active site. While this observation may explain their good
MAO‑A inhibition potencies, further investigation, possibly includ-
ing molecular docking experiments, will be required to address
this point. Numerous planar compounds such as harmine are re-
ported to be good potency MAO‑A inhibitors [34]. Interestingly,
with the exception of desmethoxyyangonin, the MAO‑B inhibition
potencies recorded for the kavalactones are higher than those re-
ported, which is possibly due to different experimental conditions
[31]. Yangonin, in particular, is a high potency MAO‑B inhibitor
(IC50 = 0.085 µM). In fact, 4 of the 6 kavalactones inhibit MAO‑B
with IC50 values in the sub-micromolar range.
1138
Reversibility of MAO inhibition, particularly of the MAO‑A iso-
form, is an important factor of MAO inhibitors to consider. Irrever-
sible MAO‑A inhibitors are associated with the “cheese reaction”,
which is a potentially fatal increase in blood pressure that may
occur when tyramine-containing foods are taken with irreversible
MAO‑A inhibitors [35,36]. Reversible MAO‑A inhibitors and
MAO‑B inhibitors do not cause the cheese reaction [2,35]. The re-
versibility of MAO‑A and MAO‑B inhibition was thus investigated
for (±)-kavain (the major constituent of P. methysticum), yangonin
(the most potent MAO inhibitor in this study), and curcumin, the
latter serving as reference inhibitor. For this purpose, dialysis ex-
periments were carried out. MAO‑A or MAO‑B and the test inhib-
itors [(±)-kavain, yangonin and curcumin] were firstly pre-incu-
bated (at a concentration of 4 × IC50) and subsequently dialyzed.
The incubation mixtures were diluted 2-fold to yield an inhibitor
concentration of 2 × IC50, and the residual MAO‑A and MAO‑B ac-
tivities were measured. For comparison, the residual MAO‑A and
MAO‑B activities in non-dialyzed pre-incubations of the enzyme
Prinsloo D et al. Monoamine Oxidase Inhibition… Planta Med 2019; 85: 1136–1142



▶ Fig. 3 Reversibility of MAO‑A and MAO‑B inhibition by kavalactones. The MAO enzymes and the test inhibitors (at a concentration of 4 × IC50)
were incubated for 15min, dialyzed for 24 h, and the residual enzyme activities were measured. Similar incubation and dialysis of the enzyme in the
absence of inhibitor, and presence of the irreversible inhibitors, pargyline, and selegiline, were also carried out. The residual activities of undialyzed
mixtures of the MAO enzymes and the test inhibitors were also recorded. kav: (±)-kavain; cur: curcumin; yang: yangonin; parg: pargyline;
sel: selegiline; NI: no inhibitor.
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and test inhibitors were also measured. As negative and positive
controls, respectively, similar dialysis experiments were carried
out in the absence of test inhibitor and presence of the irrevers-
ible MAO‑A and MAO‑B inhibitors, pargyline, and selegiline, re-
spectively.

The results of the dialysis experiments are given in ▶ Fig. 3 and
show that (±)-kavain, yangonin, and curcumin are reversible in-
hibitors of MAO‑A. After dialysis, MAO‑A activity is recovered to
110%, 99%, and 83% compared to the negative control value
(100%) for (±)-kavain, yangonin, and curcumin, respectively. As
anticipated, inhibition of MAO‑A persists in non-dialyzed pre-incu-
bations with the residual activities at 26%, 46%, and 30%, respec-
tively. For the positive control pargyline, dialysis does not restore
catalytic activity with the residual activity at 1.2–2.2%. It may thus
be concluded that (±)-kavain, yangonin, and curcumin are revers-
ible inhibitors of MAO‑A.

(±)-Kavain, yangonin and curcumin were also found to be re-
versible inhibitors of MAO‑B. After dialysis, MAO‑B activity is re-
stored to 125%, 106%, and 110% compared to the negative con-
trol for (±)-kavain, yangonin, and curcumin, respectively. In con-
trast, after pre-incubation of MAO‑B with selegiline, dialysis does
not restore catalytic activity with the residual activity at 3.9–5.2%.
Inhibition of MAO‑B by (±)-kavain, yangonin, and curcumin also
persists in non-dialyzed pre-incubations with the residual activ-
ities at 25%, 69%, and 35%, respectively.
Prinsloo D et al. Monoamine Oxidase Inhibition… Planta Med 2019; 85: 1136–1142
To determine whether (±)-kavain, yangonin, and the reference
inhibitor, curcumin, are competitive inhibitors of MAO‑A, sets of
Lineweaver-Burk plots were constructed (▶ Fig. 4). The Linewea-
ver-Burk plots for the inhibition of MAO‑A by (±)-kavain, yango-
nin, and curcumin were found to be linear and to intersect on the
y-axis. This suggests that the test inhibitors are competitive inhib-
itors of MAO‑A and further supports the findings of the dialysis
study that concluded that these inhibitors are reversible MAO‑A
inhibitors. From replots of the slopes of the Lineweaver-Burk plots
versus inhibitor concentration, Ki values (Ki = ‑x when y = 0) of
7.72, 1.12, and 3.08 µM are estimated for (±)-kavain, yangonin,
and curcumin, respectively. A similar set of Lineweaver-Burk plots
were constructed for the inhibition of MAO‑B by (±)-kavain and
yangonin. These plots show that (±)-kavain and yangonin also
are competitive inhibitors of MAO‑B with a Ki values of 5.10 and
0.226 µM. This finding is in accordance to the literature report on
the inhibition of human platelet MAO‑B by kavain and other kava-
lactones [31].

In conclusion, kavain was found to be a moderately potent
MAO inhibitor. Although MAO‑B inhibition by kavain is known, it
is shown for the first time that this compound also inhibits
MAO‑A. Other kavalactones were also evaluated as MAO inhibitors
and yangonin proved to be the most potent MAO inhibitor. In fact,
yangonin may be considered a high potency MAO‑B inhibitor, with
activity comparable to that of the reference MAO‑B inhibitor,
lazabemide [37]. The MAO‑A inhibition potency of yangonin may
1139



▶ Fig. 4 Lineweaver-Burk plots for the inhibition of MAO‑A and MAO‑B by (±)-kavain, yangonin, and curcumin. Plots were constructed in the ab-
sence of inhibitors (filled squares) and presence of various concentrations of the test inhibitors (¼ × IC50, ½ × IC50, ¾ × IC50, 1 × IC50, and 1¼ × IC50).
The insets are graphs of the slopes of the Lineweaver-Burk plots versus inhibitor concentration.
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also be considered good and is in a similar range as that of tolo-
xatone. It is suggested that the planarity of yangonin mediates
its higher MAO‑A inhibition potency compared to kavain. It may
be concluded that some of the central effects (e.g., anxiolytic) of
kava may be mediated by MAO inhibition.
T
hi

s 
do

cu
m

en
t w

as
 

Materials and Methods

Instrumentation and materials

Fluorescence spectrophotometry was carried out using a Varian
Cary Eclipse fluorescence spectrophotometer. Microsomes from
insect cells containing recombinant human MAO‑A and MAO‑B
(5mg protein/mL) and kynuramine dihydrobromide were ob-
tained from Sigma. (±)-Kavain (> 95%), (+)-7,8-dihydrokavain
(> 98%), (+)-methysticin (> 98%), (+)-7,8-dihydromethysticin
(> 90%), yangonin (> 95%), desmethoxyyangonin (> 95%), and
curcumin (> 98%) were purchased from Sigma. (+)-Kavain (98%)
was obtained from Carbosynth.

IC50 value determinations

IC50 values for the inhibition of MAO were measured by using the
recombinant human MAO‑A and MAO‑B enzymes [38]. The en-
zyme reactions were carried out in white 96-well microtiter plates
(Eppendorf) in potassium phosphate buffer (pH 7.4, 100mM,
1140
made isotonic with KCl). The final volume of the reactions was
200 µL and contained kynuramine (50 µM), the test inhibitors
(0.003–100 µM), and MAO‑A (0.0075mg protein/mL) or MAO‑B
(0.015mg protein/mL). Stock solutions of the test inhibitors were
prepared in DMSO and added to the reactions to yield a final con-
centration of 4%. Reactions serving as negative controls were car-
ried out in the absence of inhibitor. The enzyme reactions were
initiated with the addition of the MAO enzymes and were subse-
quently incubated for 20min at 37 °C in a convection oven. At
endpoint, the reactions were terminated with the addition of
80 µL sodium hydroxide (2 N) and the concentration of 4-hydroxy-
quinoline, the product of kynuramine oxidation by MAO, was
measured by fluorescence spectrophotometry (λex = 310 nm;
λem = 400 nm) [33]. For this purpose, a linear calibration curve
was constructed with authentic 4-hydroxyquinoline (0.047–
1.56 µM). The rates of MAO-catalyzed 4-hydroxyquinoline forma-
tion thus measured were fitted to the one site competition model
of the Prism 5 software package (GraphPad). This gave sigmoidal
plots of rate versus logarithm of inhibitor concentration from
which the IC50 values were estimated. IC50 values were measured
in triplicate and are reported as the geometrical mean with 95%
confidence intervals.
Prinsloo D et al. Monoamine Oxidase Inhibition… Planta Med 2019; 85: 1136–1142
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Dialysis studies

Dialysis was carried out with Slide-A-Lyzer dialysis cassettes (Ther-
mo Scientific) with a molecular weight cutoff of 10000 and a sam-
ple volume capacity of 0.5–3mL [38]. The test inhibitor (at a con-
centration equal to 4 × IC50) and MAO (0.03mg protein/mL) were
prepared to a final volume of 0.8mL in the dialysis buffer (potas-
sium phosphate buffer, 100mM, pH 7.4, 5% sucrose). Stock solu-
tions of the inhibitor were prepared in DMSO and added to the
buffer to yield 4% DMSO. These samples were pre-incubated for
15min at 37 °C and were subsequently dialyzed at 4 °C in 80mL
of dialysis buffer. The dialysis buffer was replaced with fresh buffer
at 3 h and 7 h after the start of dialysis. As positive controls,
MAO‑A and MAO‑B were similarly pre-incubated and dialyzed in
the presence of the irreversible inhibitor, pargyline (IC50 = 13 µM)
and selegiline (IC50 = 0.079 µM), respectively [39,40]. As negative
control, dialysis of the enzyme was carried out in the absence of
the inhibitor. After 24 h of dialysis, 250 µL of the dialyzed samples
were diluted 2-fold with the addition of 250 µL kynuramine (dis-
solved in potassium phosphate buffer, 100mM, pH 7.4, made iso-
tonic with KCl) to yield reactions with a final volume of 500 µL and
containing kynuramine (50 µM), MAO (0.015mg protein/mL),
and test inhibitor (2 × IC50). The reactions (prepared in 1.5mL mi-
crocentrifuge tubes) were incubated at 37 °C in a water bath and
after 20min were terminated with the addition of 400 µL sodium
hydroxide (2 N). After addition of 1000 µL water, the concentra-
tions of 4-hydroxyquinoline were measured by fluorescence spec-
trophotometry (λex = 310 nm; λem = 400 nm) employing a 3.5mL
quartz cuvette (pathlength 10 × 10mm). To quantify 4-hydroxy-
quinoline, a linear calibration curve was constructed with authen-
tic 4-hydroxyquinoline (0.047–1.56 µM). For comparison, undia-
lyzed mixtures of MAO and the test inhibitor were maintained at
4 °C for 24 h and subsequently diluted 2-fold and assayed as
above. All reactions were carried out in triplicate and the residual
enzyme catalytic rates were expressed as mean ± standard devia-
tion (SD).

Lineweaver-Burk plots and Ki value calculations

To determine the mode of MAO inhibition of selected inhibitors,
sets consisting of 6 Lineweaver-Burk plots were constructed [38].
The first plot was constructed in the absence of inhibitor while the
remaining 5 plots were constructed in the presence of different
concentrations of the test inhibitor: ¼ × IC50, ½ × IC50, ¾ × IC50,
1 × IC50, and 1¼ × IC50. The enzyme substrate, kynuramine, was
used at concentrations ranging from 15 to 250 µM while the final
enzyme concentration was 0.015mg protein/mL. All incubations
were carried out in 1.5mL microcentrifuge tubes to a volume of
500 µL. The MAO catalytic activities were measured by fluores-
cence spectrophotometry as described for the dialysis study.
Ki values were estimated from plots of the slopes of the Linewea-
ver-Burke plots versus inhibitor concentration, where the x-axis in-
tercept equals –Ki.
Prinsloo D et al. Monoamine Oxidase Inhibition… Planta Med 2019; 85: 1136–1142
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