Endoscopic ultrasound (EUS)-guided drainage procedures are becoming increasingly widespread in clinical practice, even though they are technically challenging and require a substantial learning curve. In vivo swine biliary dilatation models for training have been described; however, they provide erratic biliary dilatation and can also be technically cumbersome [1–5]. We describe EUS-guided gallbladder drainage with a lumen-apposing metal stent (LAMS) in a novel swine biliary dilatation model.

A 30-kg minipig underwent endoscopic retrograde cholangiography and temperature-controlled endobiliary radiofrequency ablation (EB-RFA) of the distal common bile duct (CBD) with a dedicated RFA system (ELRA, STARmed) (Video 1). The ablation consisted of 10 W of power delivered via an endobiliary catheter-electrode, with a temperature sensor at a target temperature of 80 °C, for two rounds of 90 seconds. After 11 days, the pig was re-examined with a linear EUS scope, which revealed dilatation of the CBD and intrahepatic biliary ducts (*); c the RFA-induced hyperechoic lesion (arrows) in the distal CBD seen from the bulb; d the distal flange of the lumen-apposing metal stent, seen from the gastric antrum and correctly deployed in the distended gallbladder (**).

Endoscopic ultrasound images in a minipig model showing: a the normal common bile duct (CBD) and portal vein (PV) at the hepatic hilum viewed from the stomach before radiofrequency ablation (RFA) of the distal CBD; b the distal CBD viewed from the stomach following RFA with evidence of dilatation of the CBD and intrahepatic biliary ducts (*); c the RFA-induced hyperechoic lesion (arrows) in the distal CBD seen from the bulb; d the distal flange of the lumen-apposing metal stent, seen from the gastric antrum and correctly deployed in the distended gallbladder (**).

Temperature-controlled EB-RFA of the distal CBD proved to be a straightforward, effective, and novel technique to create a biliary stricture with subsequent massive upstream biliary dilatation. EUS-guided gallbladder drainage with a LAMS was feasible in this model, which is theoretically suitable also for other EUS-guided biliary interventions. Furthermore, the swine model provides excellent haptic feedback and suitable levels of realism in comparison to procedures undertaken in humans.

Endoscopy_UCTN_Code_TTT_1AU_2AB

Competing interests
None
The authors

Dario Ligresti1, Stefano Baraldo2, Radhika Chavan3, Margaret Geri Keane4, Yu-Ting Kuo5, Shaimaa Saleem6, Dong-Wan Seo7

1 Endoscopy Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
2 Department of Endoscopy, Barretos Cancer Hospital, Barretos, Brazil
3 Department of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
4 Institute of Hepatology, Kings College Hospital, London, UK
5 Division of Endoscopy, Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
6 Gastroenterology and Endoscopy Department, Ahmed Maher Teaching Hospital, Cairo, Egypt
7 Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea

Corresponding author

Dong-Wan Seo, MD, PhD
Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea
Fax: +82-2-4760824
dwseoamc@amc.seoul.kr

References

Bibliography
DOI https://doi.org/10.1055/a-0867-9348
Published online: 1.4.2019
Endoscopy 2019; 51: E162-E163 © Georg Thieme Verlag KG Stuttgart · New York ISSN 0013-726X

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is a free access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online.

This section has its own submission website at https://mc.manuscriptcentral.com/e-videos

Video 1 Video showing endoscopic ultrasound-guided biliary drainage with a lumen-apposing metal stent in a novel swine biliary dilatation model obtained with a temperature-controlled endobiliary radiofrequency ablation system.